{"id":"https://openalex.org/W4389520030","doi":"https://doi.org/10.18653/v1/2023.findings-emnlp.174","title":"Multi-label and Multi-target Sampling of Machine Annotation for Computational Stance Detection","display_name":"Multi-label and Multi-target Sampling of Machine Annotation for Computational Stance Detection","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389520030","doi":"https://doi.org/10.18653/v1/2023.findings-emnlp.174"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.findings-emnlp.174","pdf_url":"https://aclanthology.org/2023.findings-emnlp.174.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://aclanthology.org/2023.findings-emnlp.174.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003055263","display_name":"Zhengyuan Liu","orcid":"https://orcid.org/0009-0003-8897-4140"},"institutions":[{"id":"https://openalex.org/I3005327000","display_name":"Institute for Infocomm Research","ror":"https://ror.org/053rfa017","country_code":"SG","type":"facility","lineage":["https://openalex.org/I115228651","https://openalex.org/I3005327000","https://openalex.org/I91275662"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Zhengyuan Liu","raw_affiliation_strings":["Institute for Infocomm Research (I"],"affiliations":[{"raw_affiliation_string":"Institute for Infocomm Research (I","institution_ids":["https://openalex.org/I3005327000"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017326180","display_name":"Hai Leong Chieu","orcid":null},"institutions":[{"id":"https://openalex.org/I28490864","display_name":"DSO National Laboratories","ror":"https://ror.org/03e05fb06","country_code":"SG","type":"nonprofit","lineage":["https://openalex.org/I28490864"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Hai Chieu","raw_affiliation_strings":["DSO National Laboratories, Singapore"],"affiliations":[{"raw_affiliation_string":"DSO National Laboratories, Singapore","institution_ids":["https://openalex.org/I28490864"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014190404","display_name":"Nancy F. Chen","orcid":"https://orcid.org/0000-0003-0872-5877"},"institutions":[{"id":"https://openalex.org/I3005327000","display_name":"Institute for Infocomm Research","ror":"https://ror.org/053rfa017","country_code":"SG","type":"facility","lineage":["https://openalex.org/I115228651","https://openalex.org/I3005327000","https://openalex.org/I91275662"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Nancy Chen","raw_affiliation_strings":["Institute for Infocomm Research (I"],"affiliations":[{"raw_affiliation_string":"Institute for Infocomm Research (I","institution_ids":["https://openalex.org/I3005327000"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":null,"issue":null,"first_page":"2641","last_page":"2649"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.7126442}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8723391},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.71571183},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.71416044},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.7126442},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6548283},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6061918},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.5558315},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.4986496},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.47017545},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.4515615},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.102615446},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.findings-emnlp.174","pdf_url":"https://aclanthology.org/2023.findings-emnlp.174.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.04495","pdf_url":"https://arxiv.org/pdf/2311.04495","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.findings-emnlp.174","pdf_url":"https://aclanthology.org/2023.findings-emnlp.174.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.6,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1821462560","https://openalex.org/W2143398792","https://openalex.org/W2302917289","https://openalex.org/W2460159515","https://openalex.org/W2752262499","https://openalex.org/W2896457183","https://openalex.org/W2963749490","https://openalex.org/W2963811339","https://openalex.org/W2964230653","https://openalex.org/W2965373594","https://openalex.org/W2970019270","https://openalex.org/W3035139434","https://openalex.org/W3102551064","https://openalex.org/W3102743123","https://openalex.org/W3166740777","https://openalex.org/W3168747821","https://openalex.org/W3173838631","https://openalex.org/W3173991475","https://openalex.org/W4221143046","https://openalex.org/W4226278401","https://openalex.org/W4319793302","https://openalex.org/W4361807267","https://openalex.org/W4385245566","https://openalex.org/W4385570260","https://openalex.org/W4385570446","https://openalex.org/W4385570939","https://openalex.org/W4386694363","https://openalex.org/W4389523957"],"related_works":["https://openalex.org/W4321353415","https://openalex.org/W2745001401","https://openalex.org/W2392921965","https://openalex.org/W2378211422","https://openalex.org/W2377979023","https://openalex.org/W2361861616","https://openalex.org/W2358755282","https://openalex.org/W2263699433","https://openalex.org/W2218034408","https://openalex.org/W2155206396"],"abstract_inverted_index":{"Data":[0],"collection":[1],"from":[2],"manual":[3,32],"labeling":[4,73],"provides":[5],"domain-specific":[6],"and":[7,13,44,54,100,116,141],"task-aligned":[8],"supervision":[9],"for":[10,74],"data-driven":[11],"approaches,":[12],"a":[14,114],"critical":[15],"mass":[16],"of":[17,42,66],"well-annotated":[18],"resources":[19],"is":[20],"required":[21],"to":[22,37,92,97,120],"achieve":[23],"reasonable":[24],"performance":[25,140],"in":[26,40,109],"natural":[27],"language":[28,69,84],"processing":[29],"tasks.":[30],"However,":[31],"annotations":[33],"are":[34,57],"often":[35],"challenging":[36],"scale":[38],"up":[39],"terms":[41],"time":[43],"budget,":[45],"especially":[46],"when":[47],"domain":[48],"knowledge,":[49],"capturing":[50],"subtle":[51],"semantic":[52],"features,":[53],"reasoning":[55],"steps":[56],"needed.":[58],"In":[59],"this":[60],"paper,":[61],"we":[62],"investigate":[63],"the":[64,122,128],"efficacy":[65],"leveraging":[67],"large":[68,83],"models":[70,85],"on":[71,127],"automated":[72],"computational":[75],"stance":[76,130],"detection.":[77],"We":[78,112],"empirically":[79],"observe":[80],"that":[81,134],"while":[82],"show":[86,133],"strong":[87],"potential":[88],"as":[89],"an":[90],"alternative":[91],"human":[93],"annotators,":[94],"their":[95,101],"sensitivity":[96],"task-specific":[98],"instructions":[99],"intrinsic":[102],"biases":[103],"pose":[104],"intriguing":[105],"yet":[106],"unique":[107],"challenges":[108],"machine":[110],"annotation.":[111],"introduce":[113],"multi-label":[115],"multi-target":[117],"sampling":[118],"strategy":[119],"optimize":[121],"annotation":[123],"quality.":[124],"Experimental":[125],"results":[126],"benchmark":[129],"detection":[131],"corpora":[132],"our":[135],"method":[136],"can":[137],"significantly":[138],"improve":[139],"learning":[142],"efficacy.":[143]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389520030","counts_by_year":[],"updated_date":"2024-12-07T19:24:29.725394","created_date":"2023-12-11"}