{"id":"https://openalex.org/W4389520021","doi":"https://doi.org/10.18653/v1/2023.findings-emnlp.159","title":"Meta-Learning of Prompt Generation for Lightweight Prompt Engineering on Language-Model-as-a-Service","display_name":"Meta-Learning of Prompt Generation for Lightweight Prompt Engineering on Language-Model-as-a-Service","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389520021","doi":"https://doi.org/10.18653/v1/2023.findings-emnlp.159"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.findings-emnlp.159","pdf_url":"https://aclanthology.org/2023.findings-emnlp.159.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://aclanthology.org/2023.findings-emnlp.159.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072880323","display_name":"Hyeonmin Ha","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hyeonmin Ha","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100414533","display_name":"Jihye Lee","orcid":"https://orcid.org/0009-0004-0759-219X"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jihye Lee","raw_affiliation_strings":["Seoul National University"],"affiliations":[{"raw_affiliation_string":"Seoul National University","institution_ids":["https://openalex.org/I139264467"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075966981","display_name":"Wookje Han","orcid":null},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wookje Han","raw_affiliation_strings":["Columbia University"],"affiliations":[{"raw_affiliation_string":"Columbia University","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5083084972","display_name":"Byung-Gon Chun","orcid":"https://orcid.org/0000-0002-9863-7186"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Byung-Gon Chun","raw_affiliation_strings":["Seoul National University"],"affiliations":[{"raw_affiliation_string":"Seoul National University","institution_ids":["https://openalex.org/I139264467"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":null,"issue":null,"first_page":"2433","last_page":"2445"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9889,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.961,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature Engineering","score":0.5820837},{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.5305358}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84692335},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.61709833},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.5820837},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5785293},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5346823},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.5305358},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52421796},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.50916666},{"id":"https://openalex.org/C116537","wikidata":"https://www.wikidata.org/wiki/Q2169973","display_name":"Service provider","level":3,"score":0.4943781},{"id":"https://openalex.org/C2780378061","wikidata":"https://www.wikidata.org/wiki/Q25351891","display_name":"Service (business)","level":2,"score":0.43036196},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.37336317},{"id":"https://openalex.org/C115903868","wikidata":"https://www.wikidata.org/wiki/Q80993","display_name":"Software engineering","level":1,"score":0.3292289},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.21154737},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0985204},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C136264566","wikidata":"https://www.wikidata.org/wiki/Q159810","display_name":"Economy","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.findings-emnlp.159","pdf_url":"https://aclanthology.org/2023.findings-emnlp.159.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.findings-emnlp.159","pdf_url":"https://aclanthology.org/2023.findings-emnlp.159.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W2112036188","https://openalex.org/W2138537392","https://openalex.org/W2170240176","https://openalex.org/W2908510526","https://openalex.org/W2971822538","https://openalex.org/W2978017171","https://openalex.org/W3098267758","https://openalex.org/W3099655892","https://openalex.org/W3152515526","https://openalex.org/W3164972323","https://openalex.org/W3168867926","https://openalex.org/W3172943453","https://openalex.org/W3174770825","https://openalex.org/W4205991051","https://openalex.org/W4221142421","https://openalex.org/W4221150345","https://openalex.org/W4225619898","https://openalex.org/W4281493460","https://openalex.org/W4285247752","https://openalex.org/W4287207937","https://openalex.org/W4292779060","https://openalex.org/W4297165176","https://openalex.org/W4297795751","https://openalex.org/W4303649108","https://openalex.org/W4308244910","https://openalex.org/W4309868377","https://openalex.org/W4320086632","https://openalex.org/W4320341763","https://openalex.org/W4323568442","https://openalex.org/W4385573003","https://openalex.org/W4385573069","https://openalex.org/W4385573411"],"related_works":["https://openalex.org/W4296359239","https://openalex.org/W4289671207","https://openalex.org/W2949588086","https://openalex.org/W2913146933","https://openalex.org/W2888099120","https://openalex.org/W2383111961","https://openalex.org/W2380820513","https://openalex.org/W2372385138","https://openalex.org/W2365952365","https://openalex.org/W2352448290"],"abstract_inverted_index":{"Recently,":[0],"many":[1],"companies":[2],"have":[3],"been":[4],"providing":[5],"the":[6,35,72,82,139,143,147,175,223],"capabilities":[7],"of":[8,21,34,67,71,101,103,199,214],"large":[9],"language":[10,140],"models":[11],"as":[12,65],"services.":[13,69],"These":[14,92],"Language-Model-as-a-Service":[15],"(LMaaS)":[16],"offerings":[17],"support":[18],"a":[19,118,129,158,181,197],"variety":[20],"user":[22],"tasks":[23,165,201],"through":[24,99],"in-context":[25,151],"learning":[26,137],"from":[27,142],"prompts,":[28],"which":[29,105],"include":[30],"instructions":[31],"and":[32,202],"demonstrations":[33],"task.":[36],"However,":[37],"for":[38,109,125,163,170],"users,":[39],"manually":[40],"crafting":[41],"prompts":[42,149,162,179],"or":[43],"running":[44],"automatic":[45,61,88,121],"prompt":[46,62,89,122,130],"tuning":[47],"methods":[48,64,93],"themselves":[49],"can":[50,160,177],"be":[51],"demanding.":[52],"Despite":[53],"these":[54],"challenges,":[55],"LMaaS":[56,80,110],"providers":[57],"do":[58],"not":[59],"offer":[60],"engineering":[63,90],"part":[66],"their":[68],"One":[70],"major":[73],"obstacles":[74],"to":[75,97,134,154,190,210,222],"deploying":[76],"them":[77],"on":[78,196,218],"an":[79],"is":[81],"heavy":[83],"computational":[84,187,229],"costs":[85,188],"associated":[86],"with":[87,180,227],"methods.":[91,192],"are":[94],"typically":[95],"designed":[96],"iterate":[98],"tens":[100],"thousands":[102],"examples,":[104],"impose":[106],"unaffordable":[107],"overheads":[108],"providers.":[111],"In":[112],"this":[113],"paper,":[114],"we":[115],"introduce":[116],"MetaL-Prompt,":[117],"novel":[119],"lightweight":[120],"generation":[123,131],"method":[124],"LMaaS.":[126],"MetaL-Prompt":[127,195],"meta-trains":[128],"model":[132,141],"(PGM)":[133],"enable":[135],"robust":[136],"by":[138,146,208],"contexts":[144],"created":[145],"generated":[148],"(i.e.,":[150],"learning).":[152],"Thanks":[153],"our":[155],"meta-learning":[156],"approach,":[157],"PGM":[159,176],"generate":[161,178],"unseen":[164,200],"without":[166],"requiring":[167],"additional":[168],"training":[169],"those":[171],"specific":[172],"tasks.":[173],"Furthermore,":[174],"single":[182],"forward":[183],"pass,":[184],"significantly":[185],"reducing":[186],"compared":[189,221],"previous":[191],"We":[193],"evaluate":[194],"range":[198],"find":[203],"that":[204],"it":[205],"improves":[206],"performance":[207],"up":[209],"19.4%":[211],"in":[212],"terms":[213],"mean":[215],"F1":[216],"score":[217],"QA":[219],"datasets":[220],"state-of-the-art":[224],"baseline":[225],"P-tuning,":[226],"limited":[228],"cost.":[230]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389520021","counts_by_year":[],"updated_date":"2024-12-07T19:24:29.709612","created_date":"2023-12-11"}