{"id":"https://openalex.org/W4389524271","doi":"https://doi.org/10.18653/v1/2023.emnlp-main.376","title":"Abstractive Open Information Extraction","display_name":"Abstractive Open Information Extraction","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389524271","doi":"https://doi.org/10.18653/v1/2023.emnlp-main.376"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.emnlp-main.376","pdf_url":"https://aclanthology.org/2023.emnlp-main.376.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://aclanthology.org/2023.emnlp-main.376.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061043570","display_name":"Kevin Y. Pei","orcid":"https://orcid.org/0000-0002-2382-2491"},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kevin Pei","raw_affiliation_strings":["University of Illinois at Urbana-Champaign,"],"affiliations":[{"raw_affiliation_string":"University of Illinois at Urbana-Champaign,","institution_ids":["https://openalex.org/I157725225"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077046363","display_name":"Ishan Jindal","orcid":"https://orcid.org/0000-0002-8854-4189"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ishan Jindal","raw_affiliation_strings":["IBM Research"],"affiliations":[{"raw_affiliation_string":"IBM Research","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101880377","display_name":"Kevin Chen\u2013Chuan Chang","orcid":"https://orcid.org/0000-0003-0997-6803"},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kevin Chang","raw_affiliation_strings":[" University of Illinois at Urbana-Champaign,"],"affiliations":[{"raw_affiliation_string":" University of Illinois at Urbana-Champaign,","institution_ids":["https://openalex.org/I157725225"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"6146","last_page":"6158"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13629","display_name":"Text Readability and Simplification","score":0.9908,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/relationship-extraction","display_name":"Relationship extraction","score":0.7535754},{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.48840326},{"id":"https://openalex.org/keywords/scope","display_name":"Scope (computer science)","score":0.44943488}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.81846446},{"id":"https://openalex.org/C153604712","wikidata":"https://www.wikidata.org/wiki/Q7310755","display_name":"Relationship extraction","level":3,"score":0.7535754},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.70381117},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.6905147},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.63490283},{"id":"https://openalex.org/C195807954","wikidata":"https://www.wikidata.org/wiki/Q1662562","display_name":"Information extraction","level":2,"score":0.5915036},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.58312154},{"id":"https://openalex.org/C184337299","wikidata":"https://www.wikidata.org/wiki/Q1437428","display_name":"Semantics (computer science)","level":2,"score":0.5637221},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.48840326},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.4507971},{"id":"https://openalex.org/C2778012447","wikidata":"https://www.wikidata.org/wiki/Q1034415","display_name":"Scope (computer science)","level":2,"score":0.44943488},{"id":"https://openalex.org/C2776207758","wikidata":"https://www.wikidata.org/wiki/Q5303302","display_name":"Downstream (manufacturing)","level":2,"score":0.43805543},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.082253575},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.emnlp-main.376","pdf_url":"https://aclanthology.org/2023.emnlp-main.376.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.emnlp-main.376","pdf_url":"https://aclanthology.org/2023.emnlp-main.376.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1980095184","https://openalex.org/W2090243146","https://openalex.org/W2127978399","https://openalex.org/W2129842875","https://openalex.org/W2131726681","https://openalex.org/W2154652894","https://openalex.org/W2251913848","https://openalex.org/W2563163303","https://openalex.org/W2738031524","https://openalex.org/W2889326796","https://openalex.org/W2897509371","https://openalex.org/W2936695845","https://openalex.org/W2966867036","https://openalex.org/W2970295111","https://openalex.org/W2971204996","https://openalex.org/W2997827534","https://openalex.org/W3034302623","https://openalex.org/W3099004917","https://openalex.org/W3103433205","https://openalex.org/W3105609801","https://openalex.org/W3107647534","https://openalex.org/W3125565408","https://openalex.org/W3153140595","https://openalex.org/W3163479207","https://openalex.org/W3189197644","https://openalex.org/W3202897922","https://openalex.org/W4200367537","https://openalex.org/W4283705115","https://openalex.org/W4285169917","https://openalex.org/W4287854681","https://openalex.org/W4288089799","https://openalex.org/W4385571433","https://openalex.org/W4385573991"],"related_works":["https://openalex.org/W842810586","https://openalex.org/W4319940250","https://openalex.org/W4236762297","https://openalex.org/W3138801416","https://openalex.org/W2594363579","https://openalex.org/W2444550338","https://openalex.org/W2369351710","https://openalex.org/W2352298027","https://openalex.org/W2169232658","https://openalex.org/W2092919065"],"abstract_inverted_index":{"Open":[0],"Information":[1],"Extraction":[2],"(OpenIE)":[3],"is":[4,53],"a":[5,104,111,127,137],"traditional":[6],"NLP":[7],"task":[8,98],"that":[9,54,115],"extracts":[10],"structured":[11],"information":[12],"from":[13,80],"unstructured":[14],"text":[15],"to":[16,87],"be":[17,62],"used":[18],"for":[19,100,126,131],"other":[20],"downstream":[21,68],"applications.":[22,69],"Traditionally,":[23],"OpenIE":[24,78,107,134],"focuses":[25],"on":[26,140],"extracting":[27],"the":[28,37,47,65,75,82,101,124,145],"surface":[29,83],"forms":[30],"of":[31,46,50,67,77,85,103,147],"relations":[32,57,79,86],"as":[33],"they":[34],"appear":[35],"in":[36],"raw":[38],"text,":[39],"which":[40,91],"we":[41,73,92,143],"term":[42,93],"extractive":[43],"OpenIE.":[44,95,149],"One":[45],"main":[48],"drawbacks":[49],"this":[51,71],"approach":[52],"implicit":[55],"semantic":[56],"(inferred":[58],"relations)":[59],"can":[60,116],"not":[61],"extracted,":[63],"compromising":[64],"performance":[66],"In":[70],"paper,":[72],"broaden":[74],"scope":[76],"merely":[81],"form":[84],"include":[88],"inferred":[89,119],"relations,":[90],"abstractive":[94,106,133,148],"This":[96],"new":[97,105,128],"calls":[99],"development":[102],"training":[108],"dataset":[109],"and":[110],"baseline":[112],"neural":[113],"model":[114],"extract":[117],"those":[118],"relations.":[120],"We":[121],"also":[122],"demonstrate":[123,144],"necessity":[125],"semantics-based":[129],"metric":[130],"evaluating":[132],"extractions.":[135],"Via":[136],"case":[138],"study":[139],"Complex":[141],"QA,":[142],"effectiveness":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389524271","counts_by_year":[],"updated_date":"2025-01-06T21:32:14.018746","created_date":"2023-12-11"}