{"id":"https://openalex.org/W4385571291","doi":"https://doi.org/10.18653/v1/2023.acl-long.869","title":"Pre-trained Language Models Can be Fully Zero-Shot Learners","display_name":"Pre-trained Language Models Can be Fully Zero-Shot Learners","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385571291","doi":"https://doi.org/10.18653/v1/2023.acl-long.869"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.acl-long.869","pdf_url":"https://aclanthology.org/2023.acl-long.869.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://aclanthology.org/2023.acl-long.869.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5068022531","display_name":"Xuandong Zhao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xuandong Zhao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057636712","display_name":"Siqi Ouyang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Siqi Ouyang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006839676","display_name":"Zhiguo Yu","orcid":"https://orcid.org/0000-0001-8921-2277"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhiguo Yu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100669887","display_name":"Ming Wu","orcid":"https://orcid.org/0000-0002-3582-4881"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ming Wu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100440407","display_name":"Lei Li","orcid":"https://orcid.org/0000-0003-3095-9776"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lei Li","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.285,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":16,"citation_normalized_percentile":{"value":0.999976,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9402,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5847397},{"id":"https://openalex.org/keywords/zero","display_name":"Zero (linguistics)","score":0.5781463},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.4285816}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.838855},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6970141},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6914011},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.62431765},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.5866826},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5847397},{"id":"https://openalex.org/C2780813799","wikidata":"https://www.wikidata.org/wiki/Q3274237","display_name":"Zero (linguistics)","level":2,"score":0.5781463},{"id":"https://openalex.org/C2778344882","wikidata":"https://www.wikidata.org/wiki/Q278938","display_name":"Shot (pellet)","level":2,"score":0.5775968},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.57727194},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.47666553},{"id":"https://openalex.org/C44291984","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Question answering","level":2,"score":0.45506096},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.4285816},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.09036821},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.acl-long.869","pdf_url":"https://aclanthology.org/2023.acl-long.869.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.06950","pdf_url":"http://arxiv.org/pdf/2212.06950","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.acl-long.869","pdf_url":"https://aclanthology.org/2023.acl-long.869.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.85,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W131533222","https://openalex.org/W1552847225","https://openalex.org/W2113459411","https://openalex.org/W2170240176","https://openalex.org/W2251939518","https://openalex.org/W2551773530","https://openalex.org/W2896457183","https://openalex.org/W2898695519","https://openalex.org/W2923014074","https://openalex.org/W2951534261","https://openalex.org/W2963748441","https://openalex.org/W2963846996","https://openalex.org/W2964071174","https://openalex.org/W2965373594","https://openalex.org/W2970161131","https://openalex.org/W2970254524","https://openalex.org/W2970476646","https://openalex.org/W2970641574","https://openalex.org/W2978670439","https://openalex.org/W2996428491","https://openalex.org/W3034999214","https://openalex.org/W3098267758","https://openalex.org/W3105625590","https://openalex.org/W3106109117","https://openalex.org/W3153427360","https://openalex.org/W3154229486","https://openalex.org/W3172642864","https://openalex.org/W3173617765","https://openalex.org/W3173777717","https://openalex.org/W4221143046","https://openalex.org/W4224055980","https://openalex.org/W4226369848","https://openalex.org/W4286982826","https://openalex.org/W4287028759","https://openalex.org/W4288089799","https://openalex.org/W4292779060","https://openalex.org/W4309444617","https://openalex.org/W4309811444","https://openalex.org/W4312091568","https://openalex.org/W4385574162"],"related_works":["https://openalex.org/W4388937922","https://openalex.org/W4214877189","https://openalex.org/W3204607391","https://openalex.org/W3113264705","https://openalex.org/W2964413124","https://openalex.org/W2773965352","https://openalex.org/W2384605597","https://openalex.org/W2381179799","https://openalex.org/W2378211422","https://openalex.org/W2074502265"],"abstract_inverted_index":{"How":[0],"can":[1],"we":[2,50],"extend":[3],"a":[4,26,92],"pre-trained":[5,67],"model":[6],"to":[7,90],"many":[8],"language":[9,19,59,68],"understanding":[10],"tasks,":[11],"without":[12],"labeled":[13,40,75],"or":[14,42,77],"additional":[15,78],"unlabeled":[16],"data?":[17],"Pre-trained":[18],"models":[20,69],"(PLMs)":[21],"have":[22],"been":[23],"effective":[24],"for":[25,56,81],"wide":[27],"range":[28],"of":[29,95,146],"NLP":[30,112],"tasks.":[31],"However,":[32],"existing":[33],"approaches":[34],"either":[35],"require":[36,73],"fine-tuning":[37],"on":[38,88,110,150,155],"downstream":[39],"datasets":[41],"manually":[43],"constructing":[44],"proper":[45],"prompts.":[46],"In":[47],"this":[48],"paper,":[49],"propose":[51],"nonparametric":[52],"prompting":[53],"PLM":[54],"(NPPrompt)":[55],"fully":[57,137],"zero-shot":[58,107,138],"understanding.":[60],"Unlike":[61],"previous":[62,103,135],"methods,":[63],"NPPrompt":[64,101,132],"uses":[65],"only":[66],"and":[70,106,123,153],"does":[71,85],"not":[72],"any":[74],"data":[76],"raw":[79],"corpus":[80],"further":[82],"fine-tuning,":[83],"nor":[84],"it":[86],"rely":[87],"humans":[89],"construct":[91],"comprehensive":[93],"set":[94],"prompt":[96],"label":[97],"words.":[98],"We":[99],"evaluate":[100],"against":[102],"major":[104],"few-shot":[105],"learning":[108],"methods":[109],"diverse":[111],"tasks:":[113],"including":[114],"text":[115,117,120,151],"classification,":[116],"entailment,":[118],"similar":[119],"retrieval,":[121],"paraphrasing,":[122],"multiple-choice":[124],"question":[125],"answering.":[126],"Experimental":[127],"results":[128],"demonstrate":[129],"that":[130],"our":[131],"outperforms":[133],"the":[134,156],"best":[136],"method":[139],"by":[140],"big":[141],"margins,":[142],"with":[143],"absolute":[144],"gains":[145],"12.8%":[147],"in":[148],"accuracy":[149],"classification":[152],"15.6%":[154],"GLUE":[157],"benchmark.":[158],"Our":[159],"source":[160],"code":[161],"is":[162],"available":[163],"at":[164],"https://anonymous.4open.":[165],"science/r/NPPrompt.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385571291","counts_by_year":[{"year":2024,"cited_by_count":9},{"year":2023,"cited_by_count":7}],"updated_date":"2025-01-02T11:11:35.975847","created_date":"2023-08-05"}