{"id":"https://openalex.org/W4385571597","doi":"https://doi.org/10.18653/v1/2023.acl-long.403","title":"Multi-Level Knowledge Distillation for Out-of-Distribution Detection in Text","display_name":"Multi-Level Knowledge Distillation for Out-of-Distribution Detection in Text","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4385571597","doi":"https://doi.org/10.18653/v1/2023.acl-long.403"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.acl-long.403","pdf_url":"https://aclanthology.org/2023.acl-long.403.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://aclanthology.org/2023.acl-long.403.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024011052","display_name":"Qianhui Wu","orcid":"https://orcid.org/0000-0001-9146-0675"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qianhui Wu","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070156365","display_name":"Huiqiang Jiang","orcid":"https://orcid.org/0000-0002-1327-4882"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huiqiang Jiang","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027688515","display_name":"Haonan Yin","orcid":null},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haonan Yin","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015011965","display_name":"B\u00f6rje F. Karlsson","orcid":"https://orcid.org/0000-0001-8925-360X"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"B\u00f6rje Karlsson","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5090151187","display_name":"Chin-Yew Lin","orcid":"https://orcid.org/0000-0002-0798-6365"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chin-Yew Lin","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.281,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":4,"citation_normalized_percentile":{"value":0.798576,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"7317","last_page":"7332"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9545,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/perplexity","display_name":"Perplexity","score":0.8539958},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.5801181},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5235847},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.46020338}],"concepts":[{"id":"https://openalex.org/C100279451","wikidata":"https://www.wikidata.org/wiki/Q372193","display_name":"Perplexity","level":3,"score":0.8539958},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7484532},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6379205},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.6121507},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.5801181},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.53364766},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53273445},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5235847},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.46020338},{"id":"https://openalex.org/C204030448","wikidata":"https://www.wikidata.org/wiki/Q101017","display_name":"Distillation","level":2,"score":0.45762074},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.acl-long.403","pdf_url":"https://aclanthology.org/2023.acl-long.403.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.11300","pdf_url":"https://arxiv.org/pdf/2211.11300","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2023.acl-long.403","pdf_url":"https://aclanthology.org/2023.acl-long.403.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.86,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":53,"referenced_works":["https://openalex.org/W1493526108","https://openalex.org/W1840435438","https://openalex.org/W1959608418","https://openalex.org/W1970088130","https://openalex.org/W2130158090","https://openalex.org/W2132870739","https://openalex.org/W2170240176","https://openalex.org/W2187089797","https://openalex.org/W2250539671","https://openalex.org/W2251939518","https://openalex.org/W2531327146","https://openalex.org/W2619479788","https://openalex.org/W2767414122","https://openalex.org/W2787947370","https://openalex.org/W2803255133","https://openalex.org/W2898856000","https://openalex.org/W2908510526","https://openalex.org/W2948947170","https://openalex.org/W2949972936","https://openalex.org/W2951883849","https://openalex.org/W2952409498","https://openalex.org/W2963341956","https://openalex.org/W2963909453","https://openalex.org/W2963924212","https://openalex.org/W2965373594","https://openalex.org/W2986193249","https://openalex.org/W2995793065","https://openalex.org/W2997140799","https://openalex.org/W3034408878","https://openalex.org/W3034630076","https://openalex.org/W3115311694","https://openalex.org/W3121064530","https://openalex.org/W3146885639","https://openalex.org/W3154773080","https://openalex.org/W3159630167","https://openalex.org/W3170220135","https://openalex.org/W3171636201","https://openalex.org/W3173783447","https://openalex.org/W3174540647","https://openalex.org/W3175204457","https://openalex.org/W3175534941","https://openalex.org/W3176617324","https://openalex.org/W3200786561","https://openalex.org/W4205725534","https://openalex.org/W4220902914","https://openalex.org/W4223945106","https://openalex.org/W4226278401","https://openalex.org/W4281928299","https://openalex.org/W4287824654","https://openalex.org/W4287854814","https://openalex.org/W4300672471","https://openalex.org/W4317553041","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4322096525","https://openalex.org/W4281893144","https://openalex.org/W2921174581","https://openalex.org/W2787311093","https://openalex.org/W2551914602","https://openalex.org/W2252095989","https://openalex.org/W2169518243","https://openalex.org/W2105076537","https://openalex.org/W2084531783","https://openalex.org/W2020757772"],"abstract_inverted_index":{"Self-supervised":[0],"representation":[1,116],"learning":[2],"has":[3],"proved":[4],"to":[5,88,112,140,209],"be":[6],"a":[7,26,33,66,82,90,106,137],"valuable":[8],"component":[9],"for":[10,171],"out-of-distribution":[11],"(OoD)":[12],"detection":[13],"with":[14,149],"only":[15,160],"the":[16,43,47,58,86,96,100,115,119,125,131,145,150,156,193,228,232],"texts":[17],"of":[18,61,118],"in-distribution":[19],"(ID)":[20],"examples.":[21,98],"These":[22],"approaches":[23],"either":[24],"train":[25],"language":[27,35,48],"model":[28,36,49,84,94,158,223],"from":[29,153],"scratch":[30],"or":[31],"fine-tune":[32],"pre-trained":[34],"using":[37],"ID":[38,97,132,146,161],"examples,":[39],"and":[40,64,188,215],"then":[41],"take":[42],"perplexity":[44],"output":[45],"by":[46,213],"as":[50,85,205],"OoD":[51,142,172],"scores.":[52],"In":[53,122],"this":[54,123],"paper,":[55],"we":[56,80,104],"analyze":[57],"complementary":[59],"characteristic":[60],"both":[62],"methods":[63],"propose":[65],"multi-level":[67],"knowledge":[68],"distillation":[69,110],"approach":[70],"that":[71,192,221],"integrates":[72],"their":[73,77],"strengths":[74],"while":[75,135],"mitigating":[76],"limitations.":[78],"Specifically,":[79],"use":[81],"fine-tuned":[83],"teacher":[87,120],"teach":[89],"randomly":[91],"initialized":[92],"student":[93,127,157],"on":[95,231],"Besides":[99],"prediction":[101],"layer":[102,109],"distillation,":[103],"present":[105],"similarity-based":[107],"intermediate":[108],"method":[111,195],"thoroughly":[113],"explore":[114,202],"space":[117],"model.":[121],"way,":[124],"learned":[126],"can":[128],"better":[129],"represent":[130],"data":[133,147],"manifold":[134,148],"gaining":[136],"stronger":[138],"ability":[139],"map":[141],"examples":[143,162],"outside":[144],"regularization":[151],"inherited":[152],"pre-training.":[154],"Besides,":[155],"sees":[159],"during":[163],"parameter":[164],"learning,":[165],"further":[166],"promoting":[167],"more":[168],"distinguishable":[169],"features":[170],"detection.":[173],"We":[174,200],"conduct":[175],"extensive":[176],"experiments":[177],"over":[178],"multiple":[179],"benchmark":[180],"datasets,":[181],"i.e.,":[182],"CLINC150,":[183],"SST,":[184],"ROSTD,":[185],"20":[186],"NewsGroups,":[187],"AG":[189],"News;":[190],"showing":[191],"proposed":[194],"yields":[196],"new":[197],"state-of-the-art":[198],"performance.":[199],"also":[201],"its":[203],"application":[204],"an":[206],"AIGC":[207],"detector":[208],"distinguish":[210],"answers":[211],"generated":[212],"ChatGPT":[214,234],"human":[216,225],"experts.":[217],"It":[218],"is":[219],"observed":[220],"our":[222],"exceeds":[224],"evaluators":[226],"in":[227],"pair-expert":[229],"task":[230],"Human":[233],"Comparison":[235],"Corpus.":[236]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385571597","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2}],"updated_date":"2025-01-19T14:40:55.876256","created_date":"2023-08-05"}