{"id":"https://openalex.org/W4385574150","doi":"https://doi.org/10.18653/v1/2022.nllp-1.18","title":"Efficient Deep Learning-based Sentence Boundary Detection in Legal Text","display_name":"Efficient Deep Learning-based Sentence Boundary Detection in Legal Text","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4385574150","doi":"https://doi.org/10.18653/v1/2022.nllp-1.18"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2022.nllp-1.18","pdf_url":"https://aclanthology.org/2022.nllp-1.18.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://aclanthology.org/2022.nllp-1.18.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067236920","display_name":"Reshma Sheik","orcid":"https://orcid.org/0000-0003-3567-9757"},"institutions":[{"id":"https://openalex.org/I122964287","display_name":"National Institute of Technology Tiruchirappalli","ror":"https://ror.org/047x65e68","country_code":"IN","type":"education","lineage":["https://openalex.org/I122964287"]}],"countries":["IN"],"is_corresponding":true,"raw_author_name":"Reshma Sheik","raw_affiliation_strings":["Department of Computer Science and Engineering","National Institute of Technology, Tiruchirappalli, Tamil Nadu, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering","institution_ids":[]},{"raw_affiliation_string":"National Institute of Technology, Tiruchirappalli, Tamil Nadu, India","institution_ids":["https://openalex.org/I122964287"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045182073","display_name":"T Gokul","orcid":"https://orcid.org/0000-0001-6874-4573"},"institutions":[{"id":"https://openalex.org/I122964287","display_name":"National Institute of Technology Tiruchirappalli","ror":"https://ror.org/047x65e68","country_code":"IN","type":"education","lineage":["https://openalex.org/I122964287"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Gokul T","raw_affiliation_strings":["Department of Computer Science and Engineering","National Institute of Technology, Tiruchirappalli, Tamil Nadu, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering","institution_ids":[]},{"raw_affiliation_string":"National Institute of Technology, Tiruchirappalli, Tamil Nadu, India","institution_ids":["https://openalex.org/I122964287"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058497633","display_name":"S. Jaya Nirmala","orcid":"https://orcid.org/0000-0001-5432-4156"},"institutions":[{"id":"https://openalex.org/I122964287","display_name":"National Institute of Technology Tiruchirappalli","ror":"https://ror.org/047x65e68","country_code":"IN","type":"education","lineage":["https://openalex.org/I122964287"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"S Nirmala","raw_affiliation_strings":["Department of Computer Science and Engineering","National Institute of Technology, Tiruchirappalli, Tamil Nadu, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering","institution_ids":[]},{"raw_affiliation_string":"National Institute of Technology, Tiruchirappalli, Tamil Nadu, India","institution_ids":["https://openalex.org/I122964287"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5067236920"],"corresponding_institution_ids":["https://openalex.org/I122964287"],"apc_list":null,"apc_paid":null,"fwci":0.433,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.809418,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"208","last_page":"217"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13643","display_name":"Artificial Intelligence in Law","score":0.9779,"subfield":{"id":"https://openalex.org/subfields/3320","display_name":"Political Science and International Relations"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature Engineering","score":0.79400575},{"id":"https://openalex.org/keywords/punctuation","display_name":"Punctuation","score":0.45684612},{"id":"https://openalex.org/keywords/named-entity-recognition","display_name":"Named Entity Recognition","score":0.417486},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.41127044}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8174666},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.79400575},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.762936},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.70463216},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.68264854},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.64471084},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6159775},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.5471614},{"id":"https://openalex.org/C540372491","wikidata":"https://www.wikidata.org/wiki/Q82622","display_name":"Punctuation","level":2,"score":0.45684612},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.4421801},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.4200654},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41806734},{"id":"https://openalex.org/C2779135771","wikidata":"https://www.wikidata.org/wiki/Q403574","display_name":"Named-entity recognition","level":3,"score":0.417486},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41461343},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.41127044},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2022.nllp-1.18","pdf_url":"https://aclanthology.org/2022.nllp-1.18.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2022.nllp-1.18","pdf_url":"https://aclanthology.org/2022.nllp-1.18.pdf","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.54,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1614298861","https://openalex.org/W1924770834","https://openalex.org/W2108251622","https://openalex.org/W2116261113","https://openalex.org/W2121764873","https://openalex.org/W2133564696","https://openalex.org/W2143230354","https://openalex.org/W2147880316","https://openalex.org/W2250978584","https://openalex.org/W2403804881","https://openalex.org/W2597655663","https://openalex.org/W2963995225","https://openalex.org/W2970597249","https://openalex.org/W2973832122","https://openalex.org/W2990977009","https://openalex.org/W3099950029","https://openalex.org/W3104018737","https://openalex.org/W3119509544","https://openalex.org/W3128086817","https://openalex.org/W3147994063","https://openalex.org/W4210496636"],"related_works":["https://openalex.org/W4387022695","https://openalex.org/W4238046985","https://openalex.org/W4232132981","https://openalex.org/W3199964822","https://openalex.org/W3164948662","https://openalex.org/W3153597579","https://openalex.org/W3047727388","https://openalex.org/W3035296120","https://openalex.org/W3003242282","https://openalex.org/W2921863388"],"abstract_inverted_index":{"A":[0,25],"key":[1],"component":[2],"of":[3,51,72,122],"the":[4,48,70,73,101,115,125,136,155,165],"Natural":[5],"Language":[6],"Processing":[7],"(NLP)":[8],"pipeline":[9],"is":[10,139],"Sentence":[11],"Boundary":[12],"Detection":[13],"(SBD).":[14],"Erroneous":[15],"SBD":[16],"could":[17],"affect":[18],"other":[19,95],"processing":[20],"steps":[21],"and":[22,31,88,106,145],"reduce":[23],"performance.":[24],"few":[26],"criteria":[27],"based":[28],"on":[29],"punctuation":[30],"capitalization":[32],"are":[33],"necessary":[34],"to":[35,44,164],"identify":[36],"sentence":[37,74],"borders":[38],"in":[39,75,124,143,160],"well-defined":[40],"corpora.":[41],"However,":[42],"due":[43],"several":[45,80],"grammatical":[46],"ambiguities,":[47],"complex":[49],"structure":[50],"legal":[52,76],"data":[53],"poses":[54],"difficulties":[55],"for":[56,68],"SBD.":[57],"In":[58],"this":[59],"paper,":[60],"we":[61],"have":[62,132],"trained":[63,137],"a":[64],"neural":[65,111],"network":[66,112],"framework":[67,118],"identifying":[69],"end":[71],"text.":[77],"We":[78,99],"used":[79],"state-of-the-art":[81],"deep":[82,96,167],"learning":[83,97,168],"models,":[84],"analyzed":[85],"their":[86],"performance,":[87,135],"identified":[89],"that":[90],"Convolutional":[91],"Neural":[92],"Network(CNN)":[93],"outperformed":[94],"frameworks.":[98,108],"compared":[100,163],"results":[102],"with":[103,119],"rule-based,":[104],"statistical,":[105],"transformer-based":[107],"The":[109],"best":[110,166],"model":[113],"outscored":[114],"popular":[116],"rule-based":[117],"an":[120],"improvement":[121],"8%":[123],"F1":[126],"score.":[127],"Although":[128],"domain-specific":[129],"statistical":[130],"models":[131,157],"slightly":[133],"improved":[134],"CNN":[138],"80":[140],"times":[141],"faster":[142],"run-time":[144],"doesn't":[146],"require":[147],"much":[148],"feature":[149],"engineering.":[150],"Furthermore,":[151],"after":[152],"extensive":[153],"pretraining,":[154],"transformer":[156],"fall":[158],"short":[159],"overall":[161],"performance":[162],"model.":[169]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385574150","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2025-03-21T20:29:18.724227","created_date":"2023-08-05"}