{"id":"https://openalex.org/W4385573032","doi":"https://doi.org/10.18653/v1/2022.emnlp-main.32","title":"Guiding Neural Entity Alignment with Compatibility","display_name":"Guiding Neural Entity Alignment with Compatibility","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4385573032","doi":"https://doi.org/10.18653/v1/2022.emnlp-main.32"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2022.emnlp-main.32","pdf_url":"https://aclanthology.org/2022.emnlp-main.32.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://aclanthology.org/2022.emnlp-main.32.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100339948","display_name":"Bing Liu","orcid":"https://orcid.org/0000-0003-0760-7975"},"institutions":[{"id":"https://openalex.org/I165143802","display_name":"The University of Queensland","ror":"https://ror.org/00rqy9422","country_code":"AU","type":"funder","lineage":["https://openalex.org/I165143802"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Bing Liu","raw_affiliation_strings":["The University of Queensland, Australia"],"affiliations":[{"raw_affiliation_string":"The University of Queensland, Australia","institution_ids":["https://openalex.org/I165143802"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075371460","display_name":"Harrisen Scells","orcid":"https://orcid.org/0000-0001-9578-7157"},"institutions":[{"id":"https://openalex.org/I165143802","display_name":"The University of Queensland","ror":"https://ror.org/00rqy9422","country_code":"AU","type":"funder","lineage":["https://openalex.org/I165143802"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Harrisen Scells","raw_affiliation_strings":["The University of Queensland, Australia"],"affiliations":[{"raw_affiliation_string":"The University of Queensland, Australia","institution_ids":["https://openalex.org/I165143802"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004652254","display_name":"Wen Hua","orcid":"https://orcid.org/0000-0001-5456-7035"},"institutions":[{"id":"https://openalex.org/I165143802","display_name":"The University of Queensland","ror":"https://ror.org/00rqy9422","country_code":"AU","type":"funder","lineage":["https://openalex.org/I165143802"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Wen Hua","raw_affiliation_strings":["The University of Queensland, Australia"],"affiliations":[{"raw_affiliation_string":"The University of Queensland, Australia","institution_ids":["https://openalex.org/I165143802"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076031002","display_name":"Guido Zuccon","orcid":"https://orcid.org/0000-0003-0271-5563"},"institutions":[{"id":"https://openalex.org/I165143802","display_name":"The University of Queensland","ror":"https://ror.org/00rqy9422","country_code":"AU","type":"funder","lineage":["https://openalex.org/I165143802"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Guido Zuccon","raw_affiliation_strings":["The University of Queensland, Australia"],"affiliations":[{"raw_affiliation_string":"The University of Queensland, Australia","institution_ids":["https://openalex.org/I165143802"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024674243","display_name":"Genghong Zhao","orcid":"https://orcid.org/0000-0002-7020-862X"},"institutions":[{"id":"https://openalex.org/I4210134419","display_name":"Neusoft (China)","ror":"https://ror.org/02zc84r97","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210134419"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Genghong Zhao","raw_affiliation_strings":["Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., China"],"affiliations":[{"raw_affiliation_string":"Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., China","institution_ids":["https://openalex.org/I4210134419"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100461928","display_name":"Xia Zhang","orcid":"https://orcid.org/0000-0003-1031-7506"},"institutions":[{"id":"https://openalex.org/I4210134419","display_name":"Neusoft (China)","ror":"https://ror.org/02zc84r97","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210134419"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xia Zhang","raw_affiliation_strings":["Neusoft Corporation, China"],"affiliations":[{"raw_affiliation_string":"Neusoft Corporation, China","institution_ids":["https://openalex.org/I4210134419"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.539,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":4,"citation_normalized_percentile":{"value":0.669846,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":81},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9922,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9778,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.5542127}],"concepts":[{"id":"https://openalex.org/C2778648169","wikidata":"https://www.wikidata.org/wiki/Q967768","display_name":"Compatibility (geochemistry)","level":2,"score":0.90513015},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71140623},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.57944524},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5611981},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.5542127},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47396943},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33808333},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08993918},{"id":"https://openalex.org/C42360764","wikidata":"https://www.wikidata.org/wiki/Q83588","display_name":"Chemical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2022.emnlp-main.32","pdf_url":"https://aclanthology.org/2022.emnlp-main.32.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.15833","pdf_url":"http://arxiv.org/pdf/2211.15833","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2022.emnlp-main.32","pdf_url":"https://aclanthology.org/2022.emnlp-main.32.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1491357092","https://openalex.org/W1597082186","https://openalex.org/W1947252511","https://openalex.org/W2551361256","https://openalex.org/W2567948266","https://openalex.org/W2616380054","https://openalex.org/W2741750617","https://openalex.org/W2808284704","https://openalex.org/W28766783","https://openalex.org/W2890187992","https://openalex.org/W2949700412","https://openalex.org/W2953122515","https://openalex.org/W2962916648","https://openalex.org/W2970583209","https://openalex.org/W2997062749","https://openalex.org/W3001896264","https://openalex.org/W3003265726","https://openalex.org/W3012000912","https://openalex.org/W3080506591","https://openalex.org/W3089874281","https://openalex.org/W3098038527","https://openalex.org/W3098583774","https://openalex.org/W3101056714","https://openalex.org/W3117053671","https://openalex.org/W3156859417","https://openalex.org/W315894690","https://openalex.org/W3189907793","https://openalex.org/W3198296722","https://openalex.org/W3209967235","https://openalex.org/W4206685197","https://openalex.org/W4292946824","https://openalex.org/W4293052541"],"related_works":["https://openalex.org/W745733672","https://openalex.org/W4229914409","https://openalex.org/W2983545107","https://openalex.org/W2390255551","https://openalex.org/W2389102290","https://openalex.org/W2381930792","https://openalex.org/W2367511445","https://openalex.org/W2358901819","https://openalex.org/W233026431","https://openalex.org/W2094745766"],"abstract_inverted_index":{"Entity":[0],"Alignment":[1],"(EA)":[2],"aims":[3],"to":[4,49,103,113,126],"find":[5],"equivalent":[6],"entities":[7,36],"between":[8],"two":[9],"Knowledge":[10],"Graphs":[11],"(KGs).":[12],"While":[13],"numerous":[14],"neural":[15,87,150],"EA":[16,69,88,109,122,145,151],"models":[17,89,152],"have":[18,41],"been":[19],"devised,":[20],"they":[21],"are":[22],"mainly":[23],"learned":[24],"using":[25,157,171],"labelled":[26,75,162,175],"data":[27,163],"only.":[28],"In":[29,147],"this":[30,77],"work,":[31],"we":[32,92],"argue":[33],"that":[34],"different":[35],"within":[37,144,154],"one":[38,62],"KG":[39,47],"should":[40,60],"compatible":[42,57,119],"counterparts":[43],"in":[44,82],"the":[45,50,54,64,74,105,115,130,139,161,174],"other":[46],"due":[48],"potential":[51],"dependencies":[52],"among":[53],"entities.":[55],"Making":[56],"predictions":[58],"thus":[59],"be":[61],"of":[63,66,107,117,129,141,160,173],"goals":[65],"training":[67,95,170],"an":[68,108,121],"model":[70],"along":[71],"with":[72,90,168],"fitting":[73],"data:":[76],"aspect":[78],"however":[79],"is":[80],"neglected":[81],"current":[83],"methods.":[84],"To":[85],"power":[86],"compatibility,":[91],"devise":[93],"a":[94],"framework":[96,156],"by":[97],"addressing":[98],"three":[99],"problems:":[100],"(1)":[101],"how":[102,112,125],"measure":[104],"compatibility":[106,131,143],"model;":[110,123],"(2)":[111],"inject":[114],"property":[116],"being":[118],"into":[120],"(3)":[124],"optimise":[127],"parameters":[128],"model.":[132],"Extensive":[133],"experiments":[134],"on":[135],"widely-used":[136],"datasets":[137],"demonstrate":[138],"advantages":[140],"integrating":[142],"models.":[146],"fact,":[148],"state-of-the-art":[149],"trained":[153],"our":[155],"just":[158],"5%":[159],"can":[164],"achieve":[165],"comparable":[166],"effectiveness":[167],"supervised":[169],"20%":[172],"data.":[176]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385573032","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":3}],"updated_date":"2025-04-22T07:57:29.318518","created_date":"2023-08-05"}