{"id":"https://openalex.org/W4281656839","doi":"https://doi.org/10.18653/v1/2022.acl-long.454","title":"MultiHiertt: Numerical Reasoning over Multi Hierarchical Tabular and Textual Data","display_name":"MultiHiertt: Numerical Reasoning over Multi Hierarchical Tabular and Textual Data","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4281656839","doi":"https://doi.org/10.18653/v1/2022.acl-long.454"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2022.acl-long.454","pdf_url":"https://aclanthology.org/2022.acl-long.454.pdf","source":{"id":"https://openalex.org/S4363608652","display_name":"Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://aclanthology.org/2022.acl-long.454.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047416722","display_name":"Yilun Zhao","orcid":"https://orcid.org/0000-0002-6812-5120"},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"education","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Yilun Zhao","raw_affiliation_strings":["Yale University"],"affiliations":[{"raw_affiliation_string":"Yale University","institution_ids":["https://openalex.org/I32971472"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100690430","display_name":"Yunxiang Li","orcid":"https://orcid.org/0000-0003-4743-0975"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yunxiang Li","raw_affiliation_strings":["The Chinese University of Hong Kong"],"affiliations":[{"raw_affiliation_string":"The Chinese University of Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112683504","display_name":"Chenying Li","orcid":null},"institutions":[{"id":"https://openalex.org/I87182695","display_name":"Universidad del Noreste","ror":"https://ror.org/02ahky613","country_code":"MX","type":"education","lineage":["https://openalex.org/I87182695"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Chenying Li","raw_affiliation_strings":["Northeastern University"],"affiliations":[{"raw_affiliation_string":"Northeastern University","institution_ids":["https://openalex.org/I87182695"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100421978","display_name":"Rui Zhang","orcid":"https://orcid.org/0000-0001-9418-0863"},"institutions":[{"id":"https://openalex.org/I130769515","display_name":"Pennsylvania State University","ror":"https://ror.org/04p491231","country_code":"US","type":"education","lineage":["https://openalex.org/I130769515"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rui Zhang","raw_affiliation_strings":["Penn State University"],"affiliations":[{"raw_affiliation_string":"Penn State University","institution_ids":["https://openalex.org/I130769515"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":["https://openalex.org/A5047416722"],"corresponding_institution_ids":["https://openalex.org/I32971472"],"apc_list":null,"apc_paid":null,"fwci":4.819,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":31,"citation_normalized_percentile":{"value":0.999875,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9743,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9717,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.71353644},{"id":"https://openalex.org/keywords/table","display_name":"Table (database)","score":0.62932664},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.4418821}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.824353},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.71353644},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.6378386},{"id":"https://openalex.org/C45235069","wikidata":"https://www.wikidata.org/wiki/Q278425","display_name":"Table (database)","level":2,"score":0.62932664},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.50619024},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.48005283},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.4418821},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.392388},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.3787941},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37244013},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.15626818},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2022.acl-long.454","pdf_url":"https://aclanthology.org/2022.acl-long.454.pdf","source":{"id":"https://openalex.org/S4363608652","display_name":"Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.01347","pdf_url":"https://arxiv.org/pdf/2206.01347","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2022.acl-long.454","pdf_url":"https://aclanthology.org/2022.acl-long.454.pdf","source":{"id":"https://openalex.org/S4363608652","display_name":"Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":64,"referenced_works":["https://openalex.org/W112197792","https://openalex.org/W1522301498","https://openalex.org/W2251079237","https://openalex.org/W2252136820","https://openalex.org/W2475046758","https://openalex.org/W2751448157","https://openalex.org/W2798658104","https://openalex.org/W2803947588","https://openalex.org/W2889787757","https://openalex.org/W2897596136","https://openalex.org/W2900690919","https://openalex.org/W2945720633","https://openalex.org/W2949615363","https://openalex.org/W2951328433","https://openalex.org/W2951416252","https://openalex.org/W2953508004","https://openalex.org/W2954153770","https://openalex.org/W2962727366","https://openalex.org/W2963341956","https://openalex.org/W2963748441","https://openalex.org/W2963899988","https://openalex.org/W2964120615","https://openalex.org/W2964710271","https://openalex.org/W2969382103","https://openalex.org/W2970019270","https://openalex.org/W2970124416","https://openalex.org/W2970742161","https://openalex.org/W2970900584","https://openalex.org/W2983680039","https://openalex.org/W2984514053","https://openalex.org/W2989352963","https://openalex.org/W2990854190","https://openalex.org/W3015468748","https://openalex.org/W3035140194","https://openalex.org/W3035428952","https://openalex.org/W3037252472","https://openalex.org/W3089083857","https://openalex.org/W3100436891","https://openalex.org/W3101082165","https://openalex.org/W3102999298","https://openalex.org/W3103667349","https://openalex.org/W3105643199","https://openalex.org/W3118722740","https://openalex.org/W3123091710","https://openalex.org/W3134642945","https://openalex.org/W3168052339","https://openalex.org/W3174105824","https://openalex.org/W3174481949","https://openalex.org/W3174986053","https://openalex.org/W3176395279","https://openalex.org/W3199258251","https://openalex.org/W3199832501","https://openalex.org/W3205396199","https://openalex.org/W4205508242","https://openalex.org/W4210451781","https://openalex.org/W4212865381","https://openalex.org/W4221163895","https://openalex.org/W4286892945","https://openalex.org/W4287214436","https://openalex.org/W4288548690","https://openalex.org/W4289494028","https://openalex.org/W4297778680","https://openalex.org/W4300485781","https://openalex.org/W4385572953"],"related_works":["https://openalex.org/W4388145910","https://openalex.org/W4321353415","https://openalex.org/W4248336175","https://openalex.org/W3009369890","https://openalex.org/W2745001401","https://openalex.org/W2381570729","https://openalex.org/W2378211422","https://openalex.org/W2366107444","https://openalex.org/W2031260042","https://openalex.org/W1976205134"],"abstract_inverted_index":{"Numerical":[0],"reasoning":[1,48,109,128,168,173],"over":[2,29,68,174],"hybrid":[3,30],"data":[4,31,55],"containing":[5],"both":[6,160],"textual":[7],"and":[8,41,72,84,96,118,123,130,162,164,209],"tabular":[9],"content":[10],"(e.g.,":[11],"financial":[12,82],"reports)":[13],"has":[14,85],"recently":[15],"attracted":[16],"much":[17],"attention":[18],"in":[19,38],"the":[20,86,108,202],"NLP":[21],"community.":[22],"However,":[23],"existing":[24,121,195],"question":[25,114],"answering":[26],"(QA)":[27],"benchmarks":[28],"only":[32],"include":[33],"a":[34,60,79,143,167,191],"single":[35],"flat":[36],"table":[37],"each":[39,91,113],"document":[40,92],"thus":[42],"lack":[43],"examples":[44],"of":[45,81,102,127,204],"multi-step":[46],"numerical":[47,138],"across":[49],"multiple":[50,94],"hierarchical":[51],"tables.":[52],"To":[53],"facilitate":[54],"analytical":[56],"progress,":[57],"we":[58],"construct":[59],"new":[61],"large-scale":[62],"benchmark,":[63],"MultiHiertt,":[64],"with":[65],"QA":[66,145],"pairs":[67],"Multi":[69],"Hierarchical":[70],"Tabular":[71],"Textual":[73],"data.":[74],"MultiHiertt":[75,189],"is":[76,115],"built":[77],"from":[78,159],"wealth":[80],"reports":[83],"following":[87],"unique":[88],"characteristics:":[89],"1)":[90],"contain":[93],"tables":[95,103,161],"longer":[97],"unstructured":[98],"texts;":[99],"2)":[100],"most":[101],"contained":[104],"are":[105,133,211],"hierarchical;":[106],"3)":[107],"process":[110],"required":[111],"for":[112,194],"more":[116],"complex":[117,137],"challenging":[119],"than":[120],"benchmarks;":[122],"4)":[124],"fine-grained":[125],"annotations":[126],"processes":[129],"supporting":[131,157],"facts":[132,152,158],"provided":[134],"to":[135,154,170],"reveal":[136],"reasoning.":[139],"We":[140,177],"further":[141],"introduce":[142],"novel":[144],"model":[146],"termed":[147],"MT2Net,":[148],"which":[149],"first":[150],"applies":[151],"retrieving":[153],"extract":[155],"relevant":[156],"text":[163],"then":[165],"uses":[166],"module":[169],"perform":[171],"symbolic":[172],"retrieved":[175],"facts.":[176],"conduct":[178],"comprehensive":[179],"experiments":[180],"on":[181],"various":[182],"baselines.":[183],"The":[184,207],"experimental":[185],"results":[186,198],"show":[187],"that":[188],"presents":[190],"strong":[192],"challenge":[193],"baselines":[196],"whose":[197],"lag":[199],"far":[200],"behind":[201],"performance":[203],"human":[205],"experts.":[206],"dataset":[208],"code":[210],"publicly":[212],"available":[213],"at":[214],"https://github.com/psunlpgroup/MultiHiertt.":[215]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4281656839","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":21},{"year":2022,"cited_by_count":3}],"updated_date":"2025-01-09T02:18:12.356763","created_date":"2022-06-13"}