{"id":"https://openalex.org/W4229907684","doi":"https://doi.org/10.18653/v1/2021.emnlp-main.696","title":"Improving Question Answering Model Robustness with Synthetic Adversarial Data Generation","display_name":"Improving Question Answering Model Robustness with Synthetic Adversarial Data Generation","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W4229907684","doi":"https://doi.org/10.18653/v1/2021.emnlp-main.696"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2021.emnlp-main.696","pdf_url":"https://aclanthology.org/2021.emnlp-main.696.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://aclanthology.org/2021.emnlp-main.696.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5018864006","display_name":"Max Bartolo","orcid":"https://orcid.org/0009-0007-3301-7895"},"institutions":[{"id":"https://openalex.org/I45129253","display_name":"University College London","ror":"https://ror.org/02jx3x895","country_code":"GB","type":"education","lineage":["https://openalex.org/I124357947","https://openalex.org/I45129253"]}],"countries":["GB"],"is_corresponding":true,"raw_author_name":"Max Bartolo","raw_affiliation_strings":["University College London"],"affiliations":[{"raw_affiliation_string":"University College London","institution_ids":["https://openalex.org/I45129253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026811404","display_name":"Tristan Thrush","orcid":null},"institutions":[{"id":"https://openalex.org/I2252078561","display_name":"Meta (Israel)","ror":"https://ror.org/02388em19","country_code":"IL","type":"company","lineage":["https://openalex.org/I2252078561","https://openalex.org/I4210114444"]}],"countries":["IL"],"is_corresponding":false,"raw_author_name":"Tristan Thrush","raw_affiliation_strings":["Facebook AI Research"],"affiliations":[{"raw_affiliation_string":"Facebook AI Research","institution_ids":["https://openalex.org/I2252078561"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041906762","display_name":"Robin Jia","orcid":"https://orcid.org/0009-0002-8123-7132"},"institutions":[{"id":"https://openalex.org/I2252078561","display_name":"Meta (Israel)","ror":"https://ror.org/02388em19","country_code":"IL","type":"company","lineage":["https://openalex.org/I2252078561","https://openalex.org/I4210114444"]}],"countries":["IL"],"is_corresponding":false,"raw_author_name":"Robin Jia","raw_affiliation_strings":["Facebook AI Research"],"affiliations":[{"raw_affiliation_string":"Facebook AI Research","institution_ids":["https://openalex.org/I2252078561"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101404695","display_name":"Sebastian Riedel","orcid":"https://orcid.org/0000-0002-3655-2486"},"institutions":[{"id":"https://openalex.org/I45129253","display_name":"University College London","ror":"https://ror.org/02jx3x895","country_code":"GB","type":"education","lineage":["https://openalex.org/I124357947","https://openalex.org/I45129253"]},{"id":"https://openalex.org/I2252078561","display_name":"Meta (Israel)","ror":"https://ror.org/02388em19","country_code":"IL","type":"company","lineage":["https://openalex.org/I2252078561","https://openalex.org/I4210114444"]}],"countries":["GB","IL"],"is_corresponding":false,"raw_author_name":"Sebastian Riedel","raw_affiliation_strings":["Facebook AI Research","University College London"],"affiliations":[{"raw_affiliation_string":"University College London","institution_ids":["https://openalex.org/I45129253"]},{"raw_affiliation_string":"Facebook AI Research","institution_ids":["https://openalex.org/I2252078561"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049427071","display_name":"Pontus Stenetorp","orcid":null},"institutions":[{"id":"https://openalex.org/I45129253","display_name":"University College London","ror":"https://ror.org/02jx3x895","country_code":"GB","type":"education","lineage":["https://openalex.org/I124357947","https://openalex.org/I45129253"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Pontus Stenetorp","raw_affiliation_strings":["University College London"],"affiliations":[{"raw_affiliation_string":"University College London","institution_ids":["https://openalex.org/I45129253"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5016956470","display_name":"Douwe Kiela","orcid":null},"institutions":[{"id":"https://openalex.org/I2252078561","display_name":"Meta (Israel)","ror":"https://ror.org/02388em19","country_code":"IL","type":"company","lineage":["https://openalex.org/I2252078561","https://openalex.org/I4210114444"]}],"countries":["IL"],"is_corresponding":false,"raw_author_name":"Douwe Kiela","raw_affiliation_strings":["Facebook AI Research"],"affiliations":[{"raw_affiliation_string":"Facebook AI Research","institution_ids":["https://openalex.org/I2252078561"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5018864006"],"corresponding_institution_ids":["https://openalex.org/I45129253"],"apc_list":null,"apc_paid":null,"fwci":5.345,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":56,"citation_normalized_percentile":{"value":0.832635,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.78294235},{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.7127149},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.4349061}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.8907653},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83373046},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.78294235},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.7127149},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57024205},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5212898},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.47954985},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.44688034},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.4349061},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41073596},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.08025655},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":5,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2021.emnlp-main.696","pdf_url":"https://aclanthology.org/2021.emnlp-main.696.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2104.08678","pdf_url":"https://arxiv.org/pdf/2104.08678","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://discovery.ucl.ac.uk/id/eprint/10145286/1/2021.emnlp-main.696.pdf","pdf_url":"https://discovery.ucl.ac.uk/id/eprint/10145286/1/2021.emnlp-main.696.pdf","source":{"id":"https://openalex.org/S4306400024","display_name":"UCL Discovery (University College London)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I45129253","host_organization_name":"University College London","host_organization_lineage":["https://openalex.org/I45129253"],"host_organization_lineage_names":["University College London"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://discovery.ucl.ac.uk/id/eprint/10145286/","pdf_url":"https://discovery.ucl.ac.uk/10145286/1/2021.emnlp-main.696.pdf","source":{"id":"https://openalex.org/S4306400024","display_name":"UCL Discovery (University College London)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I45129253","host_organization_name":"University College London","host_organization_lineage":["https://openalex.org/I45129253"],"host_organization_lineage_names":["University College London"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2104.08678","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2021.emnlp-main.696","pdf_url":"https://aclanthology.org/2021.emnlp-main.696.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4229907684"],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1489525520","https://openalex.org/W1840435438","https://openalex.org/W1854884267","https://openalex.org/W1956340063","https://openalex.org/W2597603852","https://openalex.org/W2606333299","https://openalex.org/W2796514099","https://openalex.org/W2890166583","https://openalex.org/W2913222130","https://openalex.org/W2919420119","https://openalex.org/W2949849869","https://openalex.org/W2951286828","https://openalex.org/W2962717047","https://openalex.org/W2962736243","https://openalex.org/W2962977247","https://openalex.org/W2963323070","https://openalex.org/W2963748441","https://openalex.org/W2963903950","https://openalex.org/W2963969878","https://openalex.org/W2966491090","https://openalex.org/W2970442950","https://openalex.org/W2979826702","https://openalex.org/W2988421999","https://openalex.org/W3034850762","https://openalex.org/W3034999214","https://openalex.org/W3035000591","https://openalex.org/W3035507081","https://openalex.org/W3084742463","https://openalex.org/W3101007570","https://openalex.org/W3103291112","https://openalex.org/W3104467951","https://openalex.org/W3105662186","https://openalex.org/W3153094109","https://openalex.org/W3168921237","https://openalex.org/W3171654528","https://openalex.org/W3176580738","https://openalex.org/W3177071108","https://openalex.org/W3207095490","https://openalex.org/W4287824654","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4382315317","https://openalex.org/W4246396837","https://openalex.org/W3186268266","https://openalex.org/W3128438030","https://openalex.org/W3126451824","https://openalex.org/W3109499659","https://openalex.org/W2966641257","https://openalex.org/W2502115930","https://openalex.org/W2482350142","https://openalex.org/W1561927205"],"abstract_inverted_index":{"Despite":[0],"recent":[1],"progress,":[2],"state-of-the-art":[3,123],"question":[4,64],"answering":[5,65],"models":[6,66,152],"remain":[7],"vulnerable":[8],"to":[9,26,56,62,69,93,106,157,175],"a":[10,22,31,74,101,107,144,178],"variety":[11],"of":[12,45,111,136,169],"adversarial":[13,17,59,104,160],"attacks.":[14],"While":[15],"dynamic":[16],"data":[18,60,75],"collection,":[19],"in":[20],"which":[21,41],"human":[23,70],"annotator":[24],"tries":[25],"write":[27],"examples":[28],"that":[29,78,150],"fool":[30,164],"model-in-the-loop,":[32],"can":[33,163],"improve":[34,94,121,131],"model":[35,132,166,179],"robustness,":[36],"this":[37,50,97],"process":[38],"is":[39],"expensive":[40],"limits":[42],"the":[43,46,54,122,125,137,170],"scale":[44],"collected":[47],"data.":[48,183],"In":[49],"work,":[51],"we":[52,99,120],"are":[53,153],"first":[55],"use":[57],"synthetic":[58,112,118,182],"generation":[61,76],"make":[63],"more":[67,155],"robust":[68,156],"adversaries.":[71],"We":[72,141],"develop":[73],"pipeline":[77],"selects":[79],"source":[80],"passages,":[81],"identifies":[82],"candidate":[83],"answers,":[84],"generates":[85],"questions,":[86],"then":[87],"finally":[88],"filters":[89],"or":[90],"re-labels":[91],"them":[92],"quality.":[95],"Using":[96],"approach,":[98],"amplify":[100],"smaller":[102],"human-written":[103,159],"dataset":[105,127],"much":[108],"larger":[109],"set":[110],"question-answer":[113],"pairs.":[114],"By":[115],"incorporating":[116],"our":[117,151,165],"data,":[119],"on":[124,134,172],"AdversarialQA":[126],"by":[128],"3.7F1":[129],"and":[130,148],"generalisation":[133],"nine":[135],"twelve":[138],"MRQA":[139],"datasets.":[140],"further":[142],"conduct":[143],"novel":[145],"human-in-the-loop":[146],"evaluation":[147],"show":[149],"considerably":[154],"new":[158],"examples:":[161],"crowdworkers":[162],"only":[167],"8.8%":[168],"time":[171],"average,":[173],"compared":[174],"17.6%":[176],"for":[177],"trained":[180],"without":[181]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4229907684","counts_by_year":[{"year":2024,"cited_by_count":9},{"year":2023,"cited_by_count":22},{"year":2022,"cited_by_count":23}],"updated_date":"2025-01-18T11:20:27.430626","created_date":"2022-05-11"}