{"id":"https://openalex.org/W3197309300","doi":"https://doi.org/10.18653/v1/2021.emnlp-main.651","title":"Contrasting Human- and Machine-Generated Word-Level Adversarial Examples for Text Classification","display_name":"Contrasting Human- and Machine-Generated Word-Level Adversarial Examples for Text Classification","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3197309300","doi":"https://doi.org/10.18653/v1/2021.emnlp-main.651","mag":"3197309300"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2021.emnlp-main.651","pdf_url":"https://aclanthology.org/2021.emnlp-main.651.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://aclanthology.org/2021.emnlp-main.651.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5038732160","display_name":"Maximilian Mozes","orcid":"https://orcid.org/0000-0001-8138-3792"},"institutions":[{"id":"https://openalex.org/I45129253","display_name":"University College London","ror":"https://ror.org/02jx3x895","country_code":"GB","type":"education","lineage":["https://openalex.org/I124357947","https://openalex.org/I45129253"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Maximilian Mozes","raw_affiliation_strings":["University College London"],"affiliations":[{"raw_affiliation_string":"University College London","institution_ids":["https://openalex.org/I45129253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018864006","display_name":"Max Bartolo","orcid":"https://orcid.org/0009-0007-3301-7895"},"institutions":[{"id":"https://openalex.org/I45129253","display_name":"University College London","ror":"https://ror.org/02jx3x895","country_code":"GB","type":"education","lineage":["https://openalex.org/I124357947","https://openalex.org/I45129253"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Max Bartolo","raw_affiliation_strings":["University College London"],"affiliations":[{"raw_affiliation_string":"University College London","institution_ids":["https://openalex.org/I45129253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049427071","display_name":"Pontus Stenetorp","orcid":null},"institutions":[{"id":"https://openalex.org/I45129253","display_name":"University College London","ror":"https://ror.org/02jx3x895","country_code":"GB","type":"education","lineage":["https://openalex.org/I124357947","https://openalex.org/I45129253"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Pontus Stenetorp","raw_affiliation_strings":["University College London"],"affiliations":[{"raw_affiliation_string":"University College London","institution_ids":["https://openalex.org/I45129253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019368074","display_name":"Bennett Kleinberg","orcid":"https://orcid.org/0000-0003-1658-9086"},"institutions":[{"id":"https://openalex.org/I45129253","display_name":"University College London","ror":"https://ror.org/02jx3x895","country_code":"GB","type":"education","lineage":["https://openalex.org/I124357947","https://openalex.org/I45129253"]},{"id":"https://openalex.org/I193700539","display_name":"Tilburg University","ror":"https://ror.org/04b8v1s79","country_code":"NL","type":"education","lineage":["https://openalex.org/I193700539"]}],"countries":["GB","NL"],"is_corresponding":false,"raw_author_name":"Bennett Kleinberg","raw_affiliation_strings":["Tilburg University","University College London"],"affiliations":[{"raw_affiliation_string":"University College London","institution_ids":["https://openalex.org/I45129253"]},{"raw_affiliation_string":"Tilburg University","institution_ids":["https://openalex.org/I193700539"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5056135069","display_name":"Lewis D. Griffin","orcid":"https://orcid.org/0000-0001-6286-2018"},"institutions":[{"id":"https://openalex.org/I45129253","display_name":"University College London","ror":"https://ror.org/02jx3x895","country_code":"GB","type":"education","lineage":["https://openalex.org/I124357947","https://openalex.org/I45129253"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Lewis Griffin","raw_affiliation_strings":["University College London"],"affiliations":[{"raw_affiliation_string":"University College London","institution_ids":["https://openalex.org/I45129253"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.594,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":6,"citation_normalized_percentile":{"value":0.631429,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"8258","last_page":"8270"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12262","display_name":"Hate Speech and Cyberbullying Detection","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/grammaticality","display_name":"Grammaticality","score":0.866578},{"id":"https://openalex.org/keywords/crowdsourcing","display_name":"Crowdsourcing","score":0.5979307},{"id":"https://openalex.org/keywords/distributional-semantics","display_name":"Distributional semantics","score":0.4914235},{"id":"https://openalex.org/keywords/natural-language-generation","display_name":"Natural Language Generation","score":0.44655198},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.43154654}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.86846346},{"id":"https://openalex.org/C2779525943","wikidata":"https://www.wikidata.org/wiki/Q1187300","display_name":"Grammaticality","level":3,"score":0.866578},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7789943},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.67644894},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64037937},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6050887},{"id":"https://openalex.org/C62230096","wikidata":"https://www.wikidata.org/wiki/Q275969","display_name":"Crowdsourcing","level":2,"score":0.5979307},{"id":"https://openalex.org/C184337299","wikidata":"https://www.wikidata.org/wiki/Q1437428","display_name":"Semantics (computer science)","level":2,"score":0.57586944},{"id":"https://openalex.org/C195324797","wikidata":"https://www.wikidata.org/wiki/Q33742","display_name":"Natural language","level":2,"score":0.5104014},{"id":"https://openalex.org/C134537474","wikidata":"https://www.wikidata.org/wiki/Q17144832","display_name":"Naturalness","level":2,"score":0.50729245},{"id":"https://openalex.org/C2778828372","wikidata":"https://www.wikidata.org/wiki/Q5283209","display_name":"Distributional semantics","level":3,"score":0.4914235},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.48153812},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45596737},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.44791448},{"id":"https://openalex.org/C2776187449","wikidata":"https://www.wikidata.org/wiki/Q1513879","display_name":"Natural language generation","level":3,"score":0.44655198},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.43154654},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.14062399},{"id":"https://openalex.org/C26022165","wikidata":"https://www.wikidata.org/wiki/Q8091","display_name":"Grammar","level":2,"score":0.111459166},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.09178239},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2021.emnlp-main.651","pdf_url":"https://aclanthology.org/2021.emnlp-main.651.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2109.04385","pdf_url":"https://arxiv.org/pdf/2109.04385","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://discovery.ucl.ac.uk/id/eprint/10147826/1/2021.emnlp-main.651.pdf","pdf_url":"https://discovery.ucl.ac.uk/id/eprint/10147826/1/2021.emnlp-main.651.pdf","source":{"id":"https://openalex.org/S4306400024","display_name":"UCL Discovery (University College London)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I45129253","host_organization_name":"University College London","host_organization_lineage":["https://openalex.org/I45129253"],"host_organization_lineage_names":["University College London"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.18653/v1/2021.emnlp-main.651","pdf_url":"https://aclanthology.org/2021.emnlp-main.651.pdf","source":{"id":"https://openalex.org/S4363608991","display_name":"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.84,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1673923490","https://openalex.org/W1945616565","https://openalex.org/W2038721957","https://openalex.org/W2107031757","https://openalex.org/W2113459411","https://openalex.org/W2562979205","https://openalex.org/W2794557536","https://openalex.org/W2799007037","https://openalex.org/W2799194071","https://openalex.org/W2811010710","https://openalex.org/W2888137286","https://openalex.org/W2919420119","https://openalex.org/W2949128310","https://openalex.org/W2962718684","https://openalex.org/W2963126845","https://openalex.org/W2963178695","https://openalex.org/W2963207607","https://openalex.org/W2963834268","https://openalex.org/W2963969878","https://openalex.org/W2964153729","https://openalex.org/W2964159778","https://openalex.org/W2965373594","https://openalex.org/W2966491090","https://openalex.org/W2970078867","https://openalex.org/W2980282514","https://openalex.org/W2982054702","https://openalex.org/W2996851481","https://openalex.org/W3001281326","https://openalex.org/W3034850762","https://openalex.org/W3035736465","https://openalex.org/W3100894295","https://openalex.org/W3103873238","https://openalex.org/W3104208618","https://openalex.org/W3104423855","https://openalex.org/W3105604018","https://openalex.org/W3105662186","https://openalex.org/W3155936402","https://openalex.org/W3177071108","https://openalex.org/W4300870773"],"related_works":["https://openalex.org/W4390784390","https://openalex.org/W3037186790","https://openalex.org/W2904417864","https://openalex.org/W2902236809","https://openalex.org/W2549543955","https://openalex.org/W2170375985","https://openalex.org/W2076779941","https://openalex.org/W2040148825","https://openalex.org/W2008201918","https://openalex.org/W1967141764"],"abstract_inverted_index":{"Research":[0],"shows":[1],"that":[2,112,160],"natural":[3],"language":[4,71],"processing":[5],"models":[6],"are":[7,57,114,164],"generally":[8],"considered":[9],"to":[10,13,22,42,105,135,172],"be":[11],"vulnerable":[12],"adversarial":[14,28,122,132,162],"attacks;":[15],"but":[16],"recent":[17],"work":[18],"has":[19],"drawn":[20],"attention":[21],"the":[23,34,51,67,97,107,136,147,169],"issue":[24],"of":[25,36,53,69,99,116,121,151],"validating":[26],"these":[27],"inputs":[29],"against":[30],"certain":[31],"criteria":[32,45],"(e.g.,":[33],"preservation":[35,150],"semantics":[37],"and":[38,142,154],"grammaticality).":[39],"Enforcing":[40],"constraints":[41],"uphold":[43],"such":[44],"may":[46],"render":[47],"attacks":[48,56],"unsuccessful,":[49],"raising":[50],"question":[52],"whether":[54],"valid":[55],"actually":[58],"feasible.":[59],"In":[60],"this":[61,65],"work,":[62],"we":[63,80],"investigate":[64],"through":[66],"lens":[68],"human":[70],"ability.":[72],"We":[73,128],"report":[74],"on":[75,146],"crowdsourcing":[76],"studies":[77],"in":[78,87],"which":[79],"task":[81],"humans":[82,113],"with":[83,96],"iteratively":[84],"modifying":[85],"words":[86],"an":[88],"input":[89],"text,":[90],"while":[91],"receiving":[92],"immediate":[93],"model":[94,104],"feedback,":[95],"aim":[98],"causing":[100],"a":[101,118],"sentiment":[102],"classification":[103],"misclassify":[106],"example.":[108],"Our":[109,157],"findings":[110,158],"suggest":[111,159],"capable":[115],"generating":[117],"substantial":[119],"amount":[120],"examples":[123,133,163],"using":[124],"semantics-preserving":[125],"word":[126],"substitutions.":[127],"analyze":[129],"how":[130],"human-generated":[131,161],"compare":[134],"recently":[137],"proposed":[138],"TextFooler,":[139],"Genetic,":[140],"BAE":[141],"SememePSO":[143],"attack":[144],"algorithms":[145,171],"dimensions":[148],"naturalness,":[149],"sentiment,":[152],"grammaticality":[153],"substitution":[155],"rate.":[156],"not":[165],"more":[166,184],"able":[167],"than":[168],"best":[170],"generate":[173],"natural-reading,":[174],"sentiment-preserving":[175],"examples,":[176],"though":[177],"they":[178],"do":[179],"so":[180],"by":[181],"being":[182],"much":[183],"computationally":[185],"efficient.":[186]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3197309300","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3}],"updated_date":"2025-01-18T11:21:42.136342","created_date":"2021-09-13"}