{"id":"https://openalex.org/W3043995598","doi":"https://doi.org/10.1613/jair.1.11829","title":"Scalable Planning with Deep Neural Network Learned Transition Models","display_name":"Scalable Planning with Deep Neural Network Learned Transition Models","publication_year":2020,"publication_date":"2020-07-20","ids":{"openalex":"https://openalex.org/W3043995598","doi":"https://doi.org/10.1613/jair.1.11829","mag":"3043995598"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1613/jair.1.11829","pdf_url":"https://jair.org/index.php/jair/article/download/11829/26594","source":{"id":"https://openalex.org/S139930977","display_name":"Journal of Artificial Intelligence Research","issn_l":"1076-9757","issn":["1076-9757","1943-5037"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315760","host_organization_name":"AI Access Foundation","host_organization_lineage":["https://openalex.org/P4310315760"],"host_organization_lineage_names":["AI Access Foundation"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"diamond","oa_url":"https://jair.org/index.php/jair/article/download/11829/26594","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004959715","display_name":"Ga Wu","orcid":"https://orcid.org/0000-0002-0370-0622"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Ga Wu","raw_affiliation_strings":["University of Toronto"],"affiliations":[{"raw_affiliation_string":"University of Toronto","institution_ids":["https://openalex.org/I185261750"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014246360","display_name":"Buser Say","orcid":"https://orcid.org/0000-0003-2822-5909"},"institutions":[{"id":"https://openalex.org/I4210127509","display_name":"Vector Institute","ror":"https://ror.org/03kqdja62","country_code":"CA","type":"funder","lineage":["https://openalex.org/I4210127509"]},{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]},{"id":"https://openalex.org/I56590836","display_name":"Monash University","ror":"https://ror.org/02bfwt286","country_code":"AU","type":"funder","lineage":["https://openalex.org/I56590836"]}],"countries":["AU","CA"],"is_corresponding":false,"raw_author_name":"Buser Say","raw_affiliation_strings":["Department of Mechanical and Industrial Engineering University of Toronto, Toronto, ON, Canada","Faculty of Information Technology Monash University, Melbourne, VIC, Australia","Vector Institute for Artificial Intelligence, Toronto, ON, Canada"],"affiliations":[{"raw_affiliation_string":"Vector Institute for Artificial Intelligence, Toronto, ON, Canada","institution_ids":["https://openalex.org/I4210127509","https://openalex.org/I4210127509","https://openalex.org/I4210127509"]},{"raw_affiliation_string":"Department of Mechanical and Industrial Engineering University of Toronto, Toronto, ON, Canada","institution_ids":["https://openalex.org/I185261750","https://openalex.org/I185261750","https://openalex.org/I185261750"]},{"raw_affiliation_string":"Faculty of Information Technology Monash University, Melbourne, VIC, Australia","institution_ids":["https://openalex.org/I56590836"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028174137","display_name":"Scott Sanner","orcid":"https://orcid.org/0000-0001-7984-8394"},"institutions":[{"id":"https://openalex.org/I4210127509","display_name":"Vector Institute","ror":"https://ror.org/03kqdja62","country_code":"CA","type":"funder","lineage":["https://openalex.org/I4210127509"]},{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]},{"id":"https://openalex.org/I56590836","display_name":"Monash University","ror":"https://ror.org/02bfwt286","country_code":"AU","type":"funder","lineage":["https://openalex.org/I56590836"]}],"countries":["AU","CA"],"is_corresponding":false,"raw_author_name":"Scott Sanner","raw_affiliation_strings":["Department of Mechanical and Industrial Engineering University of Toronto, Toronto, ON, Canada","Faculty of Information Technology Monash University, Melbourne, VIC, Australia","Vector Institute for Artificial Intelligence, Toronto, ON, Canada"],"affiliations":[{"raw_affiliation_string":"Vector Institute for Artificial Intelligence, Toronto, ON, Canada","institution_ids":["https://openalex.org/I4210127509","https://openalex.org/I4210127509","https://openalex.org/I4210127509"]},{"raw_affiliation_string":"Department of Mechanical and Industrial Engineering University of Toronto, Toronto, ON, Canada","institution_ids":["https://openalex.org/I185261750","https://openalex.org/I185261750","https://openalex.org/I185261750"]},{"raw_affiliation_string":"Faculty of Information Technology Monash University, Melbourne, VIC, Australia","institution_ids":["https://openalex.org/I56590836"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":0,"currency":"USD","value_usd":0},"apc_paid":null,"fwci":1.404,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":12,"citation_normalized_percentile":{"value":0.861942,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":"68","issue":null,"first_page":"571","last_page":"606"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11801","display_name":"Reservoir Engineering and Simulation Methods","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11801","display_name":"Reservoir Engineering and Simulation Methods","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13050","display_name":"Oil and Gas Production Techniques","score":0.9756,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10791","display_name":"Advanced Control Systems Optimization","score":0.9437,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.55510414}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7653453},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6330479},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59034544},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.55510414},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.49411538},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.46730137},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.41973507},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34853557},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.34375983},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1613/jair.1.11829","pdf_url":"https://jair.org/index.php/jair/article/download/11829/26594","source":{"id":"https://openalex.org/S139930977","display_name":"Journal of Artificial Intelligence Research","issn_l":"1076-9757","issn":["1076-9757","1943-5037"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315760","host_organization_name":"AI Access Foundation","host_organization_lineage":["https://openalex.org/P4310315760"],"host_organization_lineage_names":["AI Access Foundation"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://research.monash.edu/en/publications/5afe365e-fc18-4fab-ab2a-3116c60e3538","pdf_url":"https://research.monash.edu/files/315356400/315078776_oa.pdf","source":{"id":"https://openalex.org/S4306402625","display_name":"Monash University Research Portal (Monash University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I56590836","host_organization_name":"Monash University","host_organization_lineage":["https://openalex.org/I56590836"],"host_organization_lineage_names":["Monash University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1904.02873","pdf_url":"https://arxiv.org/pdf/1904.02873","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1613/jair.1.11829","pdf_url":"https://jair.org/index.php/jair/article/download/11829/26594","source":{"id":"https://openalex.org/S139930977","display_name":"Journal of Artificial Intelligence Research","issn_l":"1076-9757","issn":["1076-9757","1943-5037"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315760","host_organization_name":"AI Access Foundation","host_organization_lineage":["https://openalex.org/P4310315760"],"host_organization_lineage_names":["AI Access Foundation"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.62}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1419457303","https://openalex.org/W1515851193","https://openalex.org/W1544828112","https://openalex.org/W1601380202","https://openalex.org/W160670953","https://openalex.org/W1619459736","https://openalex.org/W1625390266","https://openalex.org/W1665214252","https://openalex.org/W1714211023","https://openalex.org/W1972440681","https://openalex.org/W2061504687","https://openalex.org/W2095705004","https://openalex.org/W2098132613","https://openalex.org/W2165304603","https://openalex.org/W2182092373","https://openalex.org/W2257979135","https://openalex.org/W2399790246","https://openalex.org/W2498891870","https://openalex.org/W2512139417","https://openalex.org/W2550730412","https://openalex.org/W2571800388","https://openalex.org/W2578313725","https://openalex.org/W2741534749","https://openalex.org/W2808541151","https://openalex.org/W2899771611","https://openalex.org/W2963446712","https://openalex.org/W3024233718","https://openalex.org/W3083685731","https://openalex.org/W3124112064","https://openalex.org/W4211221179","https://openalex.org/W4235765578","https://openalex.org/W4298684625","https://openalex.org/W4298857966","https://openalex.org/W970972620"],"related_works":["https://openalex.org/W4298287631","https://openalex.org/W4225394202","https://openalex.org/W3036642985","https://openalex.org/W3034302643","https://openalex.org/W3032952384","https://openalex.org/W2964335273","https://openalex.org/W2953061907","https://openalex.org/W2229372569","https://openalex.org/W1889624880","https://openalex.org/W1847088711"],"abstract_inverted_index":{"In":[0,120,148,223],"many":[1],"complex":[2,34,59],"planning":[3,128,245],"problems":[4,246,310],"with":[5,89,216,293],"factored,":[6],"continuous":[7,118,244,288],"state":[8,39,71,289],"and":[9,18,22,61,102,112,144,209,234,251,262,290,304],"action":[10,291],"spaces":[11],"such":[12],"as":[13,247],"Reservoir":[14],"Control,":[15],"Heating":[16],"Ventilation":[17],"Air":[19],"Conditioning":[20],"(HVAC),":[21],"Navigation":[23],"domains,":[24],"it":[25],"is":[26,266],"difficult":[27],"to":[28,49,97,117,186,218,268],"obtain":[29],"a":[30,177,187,206,240,305],"model":[31,106,110,172,185],"of":[32,44,53,57,69,82,127,171,180,228,231,242],"the":[33,42,80,152,156,181,219,229,254,270],"nonlinear":[35,64],"dynamics":[36],"that":[37,108,130,155,202,211,264],"govern":[38],"evolution.":[40],"However,":[41],"ubiquity":[43],"modern":[45],"sensors":[46],"allows":[47,168],"us":[48],"collect":[50],"large":[51],"quantities":[52],"data":[54],"from":[55],"each":[56],"these":[58],"systems":[60],"build":[62],"accurate,":[63],"deep":[65,90,133,164,182,196,221,295],"neural":[66,134,296],"network":[67,91,135,183,197],"models":[68,94],"their":[70],"transitions.":[72],"But":[73],"there":[74],"remains":[75],"one":[76,300],"major":[77],"problem":[78],"for":[79,163,200,287,308],"task":[81],"control":[83],"\u2013":[84],"how":[85],"can":[86,131,213],"we":[87,123,150,194,212,225,238],"plan":[88,214],"learned":[92,136,220,294],"transition":[93,105,137,184,298],"without":[95],"resorting":[96],"Monte":[98],"Carlo":[99],"Tree":[100],"Search":[101],"other":[103],"black-box":[104],"techniques":[107],"ignore":[109],"structure":[111],"do":[113],"not":[114,166],"easily":[115],"extend":[116],"domains?":[119],"this":[121,281],"paper,":[122],"introduce":[124],"two":[125,284],"types":[126],"methods":[129],"leverage":[132],"models:":[138,299],"Hybrid":[139],"Deep":[140],"MILP":[141],"Planner":[142,146],"(HD-MILP-Plan)":[143,303],"Tensorflow":[145],"(TF-Plan).":[147,311],"HD-MILP-Plan,":[149],"make":[151],"critical":[153],"observation":[154],"Rectified":[157],"Linear":[158,189],"Unit":[159],"(ReLU)":[160],"transfer":[161],"function":[162],"networks":[165],"only":[167],"faster":[169],"convergence":[170],"learning,":[173],"but":[174],"also":[175],"permits":[176],"direct":[178],"compilation":[179],"Mixed-Integer":[188],"Program":[190],"(MILP)":[191],"encoding.":[192],"Further,":[193],"identify":[195],"specific":[198],"optimizations":[199],"HD-MILP-Plan":[201,275],"improve":[203],"performance":[204],"over":[205],"base":[207],"encoding":[208],"show":[210,263],"optimally":[215],"respect":[217],"networks.":[222],"TF-Plan,":[224],"take":[226],"advantage":[227],"efficiency":[230],"auto-differentiation":[232],"tools":[233],"GPU-based":[235],"computation":[236,278],"where":[237],"encode":[239],"subclass":[241],"purely":[243],"Recurrent":[248],"Neural":[249],"Networks":[250],"directly":[252],"optimize":[253],"actions":[255],"through":[256],"backpropagation.":[257],"We":[258],"compare":[259],"both":[260],"planners":[261,286],"TF-Plan":[265],"able":[267],"approximate":[269],"optimal":[271,301],"plans":[272],"found":[273],"by":[274],"in":[276],"less":[277],"time.":[279],"Hence":[280],"article":[282],"offers":[283],"novel":[285],"domains":[292],"net":[297],"method":[302],"scalable":[306],"alternative":[307],"large-scale":[309]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3043995598","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2025-03-16T23:04:46.054381","created_date":"2020-07-29"}