{"id":"https://openalex.org/W4398160794","doi":"https://doi.org/10.1609/aaaiss.v3i1.31228","title":"Federated Variational Inference: Towards Improved Personalization and Generalization","display_name":"Federated Variational Inference: Towards Improved Personalization and Generalization","publication_year":2024,"publication_date":"2024-05-20","ids":{"openalex":"https://openalex.org/W4398160794","doi":"https://doi.org/10.1609/aaaiss.v3i1.31228"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaaiss.v3i1.31228","pdf_url":"https://ojs.aaai.org/index.php/AAAI-SS/article/download/31228/33388","source":{"id":"https://openalex.org/S4389157828","display_name":"Proceedings of the AAAI Symposium Series","issn_l":"2994-4317","issn":["2994-4317"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://ojs.aaai.org/index.php/AAAI-SS/article/download/31228/33388","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5092029585","display_name":"Elahe Vedadi","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Elahe Vedadi","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021577029","display_name":"Joshua V. Dillon","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Joshua V. Dillon","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086361722","display_name":"P. Mansfield","orcid":"https://orcid.org/0000-0003-4969-0543"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Philip Andrew Mansfield","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027454515","display_name":"Karan Singhal","orcid":"https://orcid.org/0000-0001-9002-7490"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Karan Singhal","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019604149","display_name":"Arash Afkanpour","orcid":null},"institutions":[{"id":"https://openalex.org/I4210127509","display_name":"Vector Institute","ror":"https://ror.org/03kqdja62","country_code":"CA","type":"facility","lineage":["https://openalex.org/I4210127509"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Arash Afkanpour","raw_affiliation_strings":["Vector Institute"],"affiliations":[{"raw_affiliation_string":"Vector Institute","institution_ids":["https://openalex.org/I4210127509"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5062812480","display_name":"Warren R. Morningstar","orcid":"https://orcid.org/0000-0002-5153-0920"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Warren Richard Morningstar","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":92},"biblio":{"volume":"3","issue":"1","first_page":"323","last_page":"327"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9884,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9884,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9226,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.6577424},{"id":"https://openalex.org/keywords/approximate-inference","display_name":"Approximate inference","score":0.49160987}],"concepts":[{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.7956791},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.7874851},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.74869984},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.6577424},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6125433},{"id":"https://openalex.org/C183003079","wikidata":"https://www.wikidata.org/wiki/Q1000371","display_name":"Personalization","level":2,"score":0.59708464},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.5535022},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.5531821},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5508686},{"id":"https://openalex.org/C2777472644","wikidata":"https://www.wikidata.org/wiki/Q16968992","display_name":"Approximate inference","level":3,"score":0.49160987},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.48276296},{"id":"https://openalex.org/C103613024","wikidata":"https://www.wikidata.org/wiki/Q230924","display_name":"Stateless protocol","level":3,"score":0.46947512},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.46014532},{"id":"https://openalex.org/C207201462","wikidata":"https://www.wikidata.org/wiki/Q182505","display_name":"Bayes' theorem","level":3,"score":0.42923963},{"id":"https://openalex.org/C48103436","wikidata":"https://www.wikidata.org/wiki/Q599031","display_name":"State (computer science)","level":2,"score":0.41422114},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.29584685},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13208243},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaaiss.v3i1.31228","pdf_url":"https://ojs.aaai.org/index.php/AAAI-SS/article/download/31228/33388","source":{"id":"https://openalex.org/S4389157828","display_name":"Proceedings of the AAAI Symposium Series","issn_l":"2994-4317","issn":["2994-4317"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.13672","pdf_url":"https://arxiv.org/pdf/2305.13672","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaaiss.v3i1.31228","pdf_url":"https://ojs.aaai.org/index.php/AAAI-SS/article/download/31228/33388","source":{"id":"https://openalex.org/S4389157828","display_name":"Proceedings of the AAAI Symposium Series","issn_l":"2994-4317","issn":["2994-4317"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1533861849","https://openalex.org/W1677182931","https://openalex.org/W2156387975","https://openalex.org/W2167433878","https://openalex.org/W2604763608","https://openalex.org/W2896426532","https://openalex.org/W2949377959","https://openalex.org/W2994684563","https://openalex.org/W3006555759","https://openalex.org/W3007345209","https://openalex.org/W3034790665","https://openalex.org/W3038022836","https://openalex.org/W3104631511","https://openalex.org/W3118154863","https://openalex.org/W3118608800","https://openalex.org/W3122967774","https://openalex.org/W3129362180","https://openalex.org/W3178336997","https://openalex.org/W3214098988","https://openalex.org/W4283076620","https://openalex.org/W4285071899","https://openalex.org/W4286892251","https://openalex.org/W4289147229","https://openalex.org/W4298532043","https://openalex.org/W4299283926","https://openalex.org/W4318619660","https://openalex.org/W4319653656","https://openalex.org/W4323438825","https://openalex.org/W4361192893","https://openalex.org/W656838156"],"related_works":["https://openalex.org/W4378464854","https://openalex.org/W4360604845","https://openalex.org/W4231088008","https://openalex.org/W3130948357","https://openalex.org/W3040374273","https://openalex.org/W2955572513","https://openalex.org/W2806284780","https://openalex.org/W2116712504","https://openalex.org/W2036359834","https://openalex.org/W151293476"],"abstract_inverted_index":{"Conventional":[0],"federated":[1,53],"learning":[2,54],"algorithms":[3],"train":[4,87],"a":[5,68],"single":[6],"global":[7],"model":[8,71,89,112],"by":[9],"leveraging":[10],"all":[11],"participating":[12],"clients\u2019":[13],"data.":[14],"However,":[15],"due":[16],"to":[17,36,42,86,103],"heterogeneity":[18,57],"in":[19,50,58],"client":[20,59],"generative":[21,70],"distributions":[22,61],"and":[23,48,62,72,115,119],"predictive":[24,33,63],"models,":[25],"these":[26],"approaches":[27],"may":[28],"not":[29],"appropriately":[30],"approximate":[31,80],"the":[32,124],"process,":[34],"converge":[35],"an":[37],"optimal":[38],"state,":[39],"or":[40],"generalize":[41],"new":[43],"clients.":[44],"We":[45,65,78,91,99,109],"study":[46],"personalization":[47],"generalization":[49,105],"stateless":[51],"cross-device":[52],"setups":[55],"assuming":[56],"data":[60],"models.":[64],"first":[66],"propose":[67],"hierarchical":[69],"formalize":[73],"it":[74],"using":[75,83],"Bayesian":[76],"Inference.":[77],"then":[79],"this":[81,93],"process":[82],"Variational":[84,96],"Inference":[85,97],"our":[88,111],"efficiently.":[90],"call":[92],"algorithm":[94],"Federated":[95],"(FedVI).":[98],"use":[100],"PAC-Bayes":[101],"analysis":[102],"provide":[104],"bounds":[106],"for":[107],"FedVI.":[108],"evaluate":[110],"on":[113,126],"FEMNIST":[114],"CIFAR-100":[116],"image":[117],"classification":[118],"show":[120],"that":[121],"FedVI":[122],"beats":[123],"state-of-the-art":[125],"both":[127],"tasks.":[128]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4398160794","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-22T03:11:00.135662","created_date":"2024-05-22"}