{"id":"https://openalex.org/W4393152742","doi":"https://doi.org/10.1609/aaai.v38i20.30234","title":"Promoting Fair Vaccination Strategies through Influence Maximization: A Case Study on COVID-19 Spread","display_name":"Promoting Fair Vaccination Strategies through Influence Maximization: A Case Study on COVID-19 Spread","publication_year":2024,"publication_date":"2024-03-24","ids":{"openalex":"https://openalex.org/W4393152742","doi":"https://doi.org/10.1609/aaai.v38i20.30234"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v38i20.30234","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/30234/32196","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/30234/32196","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051375787","display_name":"Nicola Neophytou","orcid":null},"institutions":[{"id":"https://openalex.org/I4210164802","display_name":"Mila - Quebec Artificial Intelligence Institute","ror":"https://ror.org/05c22rx21","country_code":"CA","type":"facility","lineage":["https://openalex.org/I4210164802"]},{"id":"https://openalex.org/I70931966","display_name":"Universit\u00e9 de Montr\u00e9al","ror":"https://ror.org/0161xgx34","country_code":"CA","type":"funder","lineage":["https://openalex.org/I70931966"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Nicola Neophytou","raw_affiliation_strings":["Mila, Quebec AI Institute\nUniversit\u00e9 de Montr\u00e9al"],"affiliations":[{"raw_affiliation_string":"Mila, Quebec AI Institute\nUniversit\u00e9 de Montr\u00e9al","institution_ids":["https://openalex.org/I4210164802","https://openalex.org/I70931966"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091388380","display_name":"Afaf Ta\u00efk","orcid":"https://orcid.org/0000-0003-1485-1845"},"institutions":[{"id":"https://openalex.org/I4210164802","display_name":"Mila - Quebec Artificial Intelligence Institute","ror":"https://ror.org/05c22rx21","country_code":"CA","type":"facility","lineage":["https://openalex.org/I4210164802"]},{"id":"https://openalex.org/I70931966","display_name":"Universit\u00e9 de Montr\u00e9al","ror":"https://ror.org/0161xgx34","country_code":"CA","type":"funder","lineage":["https://openalex.org/I70931966"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Afaf Taik","raw_affiliation_strings":["Mila, Quebec AI Institute\nUniversit\u00e9 de Montr\u00e9al"],"affiliations":[{"raw_affiliation_string":"Mila, Quebec AI Institute\nUniversit\u00e9 de Montr\u00e9al","institution_ids":["https://openalex.org/I4210164802","https://openalex.org/I70931966"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5053667504","display_name":"Golnoosh Farnadi","orcid":"https://orcid.org/0000-0003-4504-8668"},"institutions":[{"id":"https://openalex.org/I4210164802","display_name":"Mila - Quebec Artificial Intelligence Institute","ror":"https://ror.org/05c22rx21","country_code":"CA","type":"facility","lineage":["https://openalex.org/I4210164802"]},{"id":"https://openalex.org/I5023651","display_name":"McGill University","ror":"https://ror.org/01pxwe438","country_code":"CA","type":"funder","lineage":["https://openalex.org/I5023651"]},{"id":"https://openalex.org/I70931966","display_name":"Universit\u00e9 de Montr\u00e9al","ror":"https://ror.org/0161xgx34","country_code":"CA","type":"funder","lineage":["https://openalex.org/I70931966"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Golnoosh Farnadi","raw_affiliation_strings":["Mila, Quebec AI Institute\nUniversit\u00e9 de Montr\u00e9al\nMcGill University"],"affiliations":[{"raw_affiliation_string":"Mila, Quebec AI Institute\nUniversit\u00e9 de Montr\u00e9al\nMcGill University","institution_ids":["https://openalex.org/I4210164802","https://openalex.org/I5023651","https://openalex.org/I70931966"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":18.4,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.954545,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":93},"biblio":{"volume":"38","issue":"20","first_page":"22285","last_page":"22293"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10833","display_name":"Vaccine Coverage and Hesitancy","score":0.7464,"subfield":{"id":"https://openalex.org/subfields/3306","display_name":"Health"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10833","display_name":"Vaccine Coverage and Hesitancy","score":0.7464,"subfield":{"id":"https://openalex.org/subfields/3306","display_name":"Health"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10410","display_name":"COVID-19 epidemiological studies","score":0.7115,"subfield":{"id":"https://openalex.org/subfields/2611","display_name":"Modeling and Simulation"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11711","display_name":"COVID-19 Pandemic Impacts","score":0.6678,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/2019-20-coronavirus-outbreak","display_name":"2019-20 coronavirus outbreak","score":0.65255713},{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.50095344}],"concepts":[{"id":"https://openalex.org/C3008058167","wikidata":"https://www.wikidata.org/wiki/Q84263196","display_name":"Coronavirus disease 2019 (COVID-19)","level":4,"score":0.8626419},{"id":"https://openalex.org/C3006700255","wikidata":"https://www.wikidata.org/wiki/Q81068910","display_name":"2019-20 coronavirus outbreak","level":3,"score":0.65255713},{"id":"https://openalex.org/C22070199","wikidata":"https://www.wikidata.org/wiki/Q192995","display_name":"Vaccination","level":2,"score":0.6400279},{"id":"https://openalex.org/C3007834351","wikidata":"https://www.wikidata.org/wiki/Q82069695","display_name":"Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)","level":5,"score":0.59224635},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.50095344},{"id":"https://openalex.org/C159047783","wikidata":"https://www.wikidata.org/wiki/Q7215","display_name":"Virology","level":1,"score":0.4652413},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3409747},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.32598934},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.22067636},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.1332801},{"id":"https://openalex.org/C116675565","wikidata":"https://www.wikidata.org/wiki/Q3241045","display_name":"Outbreak","level":2,"score":0.120250344},{"id":"https://openalex.org/C524204448","wikidata":"https://www.wikidata.org/wiki/Q788926","display_name":"Infectious disease (medical specialty)","level":3,"score":0.09420782},{"id":"https://openalex.org/C2779134260","wikidata":"https://www.wikidata.org/wiki/Q12136","display_name":"Disease","level":2,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v38i20.30234","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/30234/32196","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2403.05564","pdf_url":"https://arxiv.org/pdf/2403.05564","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v38i20.30234","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/30234/32196","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.41,"display_name":"No poverty","id":"https://metadata.un.org/sdg/1"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":45,"referenced_works":["https://openalex.org/W1856548066","https://openalex.org/W1984069252","https://openalex.org/W2000444555","https://openalex.org/W2108278206","https://openalex.org/W2127387319","https://openalex.org/W2141403143","https://openalex.org/W2154897810","https://openalex.org/W2788481061","https://openalex.org/W3022163979","https://openalex.org/W3022913155","https://openalex.org/W3023171789","https://openalex.org/W3023172625","https://openalex.org/W3026200415","https://openalex.org/W3026729545","https://openalex.org/W3031713996","https://openalex.org/W3042090795","https://openalex.org/W3042720974","https://openalex.org/W3043786499","https://openalex.org/W3045622115","https://openalex.org/W3099011804","https://openalex.org/W3109979900","https://openalex.org/W3114376015","https://openalex.org/W3127396608","https://openalex.org/W3131534110","https://openalex.org/W3140873963","https://openalex.org/W3145677695","https://openalex.org/W3157132858","https://openalex.org/W3171952049","https://openalex.org/W3181414820","https://openalex.org/W3194944616","https://openalex.org/W3196566296","https://openalex.org/W3206474719","https://openalex.org/W3207021311","https://openalex.org/W3213611728","https://openalex.org/W4220657949","https://openalex.org/W4232212779","https://openalex.org/W4282923472","https://openalex.org/W4283170452","https://openalex.org/W4283815121","https://openalex.org/W4285676800","https://openalex.org/W4293576567","https://openalex.org/W4294276810","https://openalex.org/W4296113518","https://openalex.org/W4309342396","https://openalex.org/W4393152742"],"related_works":["https://openalex.org/W4388896133","https://openalex.org/W4382894326","https://openalex.org/W4292098121","https://openalex.org/W4206669628","https://openalex.org/W3198183218","https://openalex.org/W3176864053","https://openalex.org/W3171943759","https://openalex.org/W3154141118","https://openalex.org/W3036314732","https://openalex.org/W3009669391"],"abstract_inverted_index":{"The":[0],"aftermath":[1],"of":[2,35,75,161],"the":[3,33,154,159],"Covid-19":[4,146],"pandemic":[5],"saw":[6],"more":[7,56,135],"severe":[8,59],"outcomes":[9],"for":[10,132],"racial":[11],"minority":[12],"groups":[13,38],"and":[14,117,169],"economically-deprived":[15],"communities.":[16],"Such":[17],"disparities":[18],"can":[19],"be":[20,55],"explained":[21],"by":[22],"several":[23],"factors,":[24,120],"including":[25],"unequal":[26],"access":[27],"to":[28,39,44,54,58,63,71,80,100,123,127],"healthcare,":[29],"as":[30,32,112],"well":[31],"inability":[34],"low":[36],"income":[37],"reduce":[40],"their":[41],"mobility":[42,98],"due":[43,62],"work":[45],"or":[46,134],"social":[47,114],"obligations.":[48],"Moreover,":[49],"senior":[50],"citizens":[51],"were":[52],"found":[53],"susceptible":[57],"symptoms,":[60],"largely":[61],"age-related":[64],"health":[65],"reasons.":[66],"Adapting":[67],"vaccine":[68,125],"distribution":[69,126],"strategies":[70,103],"consider":[72],"a":[73,89,139],"range":[74],"demographics":[76],"is":[77],"therefore":[78],"essential":[79],"address":[81],"these":[82],"disparities.":[83],"In":[84],"this":[85],"study,":[86],"we":[87,121,157],"propose":[88],"novel":[90],"approach":[91,164],"that":[92],"utilizes":[93],"influence":[94],"maximization":[95],"(IM)":[96],"on":[97,145],"networks":[99],"develop":[101],"vaccination":[102,173],"which":[104],"incorporate":[105],"demographic":[106],"fairness.":[107],"By":[108],"considering":[109],"factors":[110],"such":[111],"race,":[113],"status,":[115],"age,":[116],"associated":[118],"risk":[119],"aim":[122],"optimize":[124],"achieve":[128],"various":[129],"fairness":[130,171],"definitions":[131],"one":[133],"protected":[136],"attributes":[137],"at":[138],"time.":[140],"Through":[141],"extensive":[142],"experiments":[143],"conducted":[144],"spread":[147],"in":[148,165,172],"three":[149],"major":[150],"metropolitan":[151],"areas":[152],"across":[153],"United":[155],"States,":[156],"demonstrate":[158],"effectiveness":[160],"our":[162],"proposed":[163],"reducing":[166],"disease":[167],"transmission":[168],"promoting":[170],"distribution.":[174]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393152742","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-03-26T02:43:34.229212","created_date":"2024-03-26"}