{"id":"https://openalex.org/W4393159640","doi":"https://doi.org/10.1609/aaai.v38i14.29557","title":"LERE: Learning-Based Low-Rank Matrix Recovery with Rank Estimation","display_name":"LERE: Learning-Based Low-Rank Matrix Recovery with Rank Estimation","publication_year":2024,"publication_date":"2024-03-24","ids":{"openalex":"https://openalex.org/W4393159640","doi":"https://doi.org/10.1609/aaai.v38i14.29557"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v38i14.29557","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/29557/30933","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/29557/30933","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037564001","display_name":"Zhengqin Xu","orcid":null},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhengqin Xu","raw_affiliation_strings":["Shanghai Jiao Tong University"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074865219","display_name":"Yulun Zhang","orcid":"https://orcid.org/0000-0002-2288-5079"},"institutions":[{"id":"https://openalex.org/I35440088","display_name":"ETH Zurich","ror":"https://ror.org/05a28rw58","country_code":"CH","type":"funder","lineage":["https://openalex.org/I2799323385","https://openalex.org/I35440088"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Yulun Zhang","raw_affiliation_strings":["ETH Zurich"],"affiliations":[{"raw_affiliation_string":"ETH Zurich","institution_ids":["https://openalex.org/I35440088"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100704674","display_name":"Chao Ma","orcid":"https://orcid.org/0000-0001-6758-1100"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chao Ma","raw_affiliation_strings":["Shanghai Jiao Tong University"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048907728","display_name":"Yichao Yan","orcid":"https://orcid.org/0000-0003-3209-8965"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yichao Yan","raw_affiliation_strings":["Shanghai Jiao Tong University"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016326528","display_name":"Zelin Peng","orcid":null},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zelin Peng","raw_affiliation_strings":["Shanghai Jiao Tong University"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109166640","display_name":"Shoulie Xie","orcid":null},"institutions":[{"id":"https://openalex.org/I3005327000","display_name":"Institute for Infocomm Research","ror":"https://ror.org/053rfa017","country_code":"SG","type":"funder","lineage":["https://openalex.org/I115228651","https://openalex.org/I3005327000","https://openalex.org/I91275662"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Shoulie Xie","raw_affiliation_strings":["Institute for Infocomm Research, Singapore 138632"],"affiliations":[{"raw_affiliation_string":"Institute for Infocomm Research, Singapore 138632","institution_ids":["https://openalex.org/I3005327000"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068171246","display_name":"Shiqian Wu","orcid":"https://orcid.org/0000-0002-6383-7663"},"institutions":[{"id":"https://openalex.org/I43922553","display_name":"Wuhan University of Science and Technology","ror":"https://ror.org/00e4hrk88","country_code":"CN","type":"funder","lineage":["https://openalex.org/I43922553"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shiqian Wu","raw_affiliation_strings":["School of Information Science and Engineering, Wuhan University of Science and Technology"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Engineering, Wuhan University of Science and Technology","institution_ids":["https://openalex.org/I43922553"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019708391","display_name":"Xiaokang Yang","orcid":"https://orcid.org/0000-0003-4029-3322"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaokang Yang","raw_affiliation_strings":["Shanghai Jiao Tong University of China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University of China","institution_ids":["https://openalex.org/I183067930"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":"38","issue":"14","first_page":"16228","last_page":"16236"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9709,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9709,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9105,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.81145215},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.49076948},{"id":"https://openalex.org/keywords/low-rank-approximation","display_name":"Low-rank approximation","score":0.44694942}],"concepts":[{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.81145215},{"id":"https://openalex.org/C96250715","wikidata":"https://www.wikidata.org/wiki/Q965330","display_name":"Estimation","level":2,"score":0.57268775},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.49076948},{"id":"https://openalex.org/C90199385","wikidata":"https://www.wikidata.org/wiki/Q6692777","display_name":"Low-rank approximation","level":3,"score":0.44694942},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.44066602},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.43277588},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38965994},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.35837522},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.17629614},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.10890448},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.107608676},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.100842535},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.076539874},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v38i14.29557","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/29557/30933","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v38i14.29557","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/29557/30933","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.79,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1969698720","https://openalex.org/W2000157792","https://openalex.org/W2060204507","https://openalex.org/W2110531331","https://openalex.org/W2116837464","https://openalex.org/W2118103795","https://openalex.org/W2118550318","https://openalex.org/W2145962650","https://openalex.org/W2147512299","https://openalex.org/W2166426208","https://openalex.org/W2403076655","https://openalex.org/W2775111227","https://openalex.org/W2901757263","https://openalex.org/W2939046183","https://openalex.org/W2963581790","https://openalex.org/W3010434925","https://openalex.org/W3023670885","https://openalex.org/W3093365368","https://openalex.org/W3094857757","https://openalex.org/W3113541841","https://openalex.org/W3114287677","https://openalex.org/W3118581654","https://openalex.org/W3131908857","https://openalex.org/W3132256512","https://openalex.org/W3133902371","https://openalex.org/W3152703571","https://openalex.org/W3174042135","https://openalex.org/W3192692954","https://openalex.org/W3193458794","https://openalex.org/W3205245241","https://openalex.org/W3206388874","https://openalex.org/W3209038241","https://openalex.org/W3211643552","https://openalex.org/W4226289515","https://openalex.org/W4300829514","https://openalex.org/W4307054432","https://openalex.org/W4375953589"],"related_works":["https://openalex.org/W4289115725","https://openalex.org/W3144644423","https://openalex.org/W3144354057","https://openalex.org/W3106318770","https://openalex.org/W2967798957","https://openalex.org/W2904061867","https://openalex.org/W2736398265","https://openalex.org/W2361403716","https://openalex.org/W2336195973","https://openalex.org/W2024384195"],"abstract_inverted_index":{"A":[0,80,156],"fundamental":[1],"task":[2],"in":[3,109,131,168],"the":[4,15,29,50,65,95,98,110,118,132,139,149,166,169,175,178,187],"realms":[5],"of":[6,52,97,134,177],"computer":[7],"vision,":[8],"Low-Rank":[9],"Matrix":[10],"Recovery":[11],"(LRMR)":[12],"focuses":[13],"on":[14,64],"inherent":[16],"low-rank":[17,83,119,189],"structure":[18],"precise":[19],"recovery":[20,85,171],"from":[21,148],"incomplete":[22],"data":[23],"and/or":[24],"corrupted":[25],"measurements":[26],"given":[27],"that":[28,205],"rank":[30,44,51,135],"is":[31,90,114,161,193,216],"a":[32,104,128],"known":[33],"prior":[34],"or":[35],"accurately":[36,48],"estimated.":[37],"However,":[38],"it":[39],"remains":[40],"challenging":[41],"for":[42,213],"existing":[43,57,199],"estimation":[45],"methods":[46,60],"to":[47,72,74,127,138,164],"estimate":[49],"an":[53],"ill-conditioned":[54],"matrix.":[55,190],"Also,":[56],"LRMR":[58,200],"optimization":[59],"are":[61,69],"heavily":[62],"dependent":[63],"chosen":[66],"parameters,":[67],"and":[68,102,117,145,181,196],"therefore":[70],"difficult":[71],"adapt":[73],"different":[75],"situations.":[76],"Addressing":[77],"these":[78],"issues,":[79],"novel":[81],"LEarning-based":[82],"matrix":[84,151],"with":[86],"Rank":[87],"Estimation":[88],"(LERE)":[89],"proposed.":[91],"More":[92],"specifically,":[93],"considering":[94],"characteristics":[96],"Gerschgorin":[99,111],"disk's":[100],"center":[101],"radius,":[103],"new":[105],"heuristic":[106],"decision":[107],"rule":[108],"Disk":[112],"Theorem":[113],"significantly":[115],"enhanced":[116],"boundary":[120],"can":[121],"be":[122],"exactly":[123],"located,":[124],"which":[125],"leads":[126],"marked":[129],"improvement":[130],"accuracy":[133],"estimation.":[136],"According":[137],"estimated":[140],"rank,":[141],"we":[142],"select":[143],"row":[144,179],"column":[146,182],"sub-matrices":[147],"observation":[150],"by":[152,174],"uniformly":[153],"random":[154],"sampling.":[155],"17-iteration":[157],"feedforward-recurrent-mixed":[158],"neural":[159],"network":[160],"then":[162],"adapted":[163],"learn":[165],"parameters":[167],"sub-matrix":[170,180],"processing.":[172],"Finally,":[173],"correlation":[176],"sub-matrix,":[183],"LERE":[184,192,206],"successfully":[185],"recovers":[186],"underlying":[188],"Overall,":[191],"more":[194],"efficient":[195],"robust":[197],"than":[198],"methods.":[201,210],"Experimental":[202],"results":[203],"demonstrate":[204],"surpasses":[207],"state-of-the-art":[208],"(SOTA)":[209],"The":[211],"code":[212],"this":[214],"work":[215],"accessible":[217],"at":[218],"https://github.com/zhengqinxu/LERE.":[219]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4393159640","counts_by_year":[],"updated_date":"2025-04-23T21:52:38.931878","created_date":"2024-03-26"}