{"id":"https://openalex.org/W4382202856","doi":"https://doi.org/10.1609/aaai.v37i9.26274","title":"Reinforcement Causal Structure Learning on Order Graph","display_name":"Reinforcement Causal Structure Learning on Order Graph","publication_year":2023,"publication_date":"2023-06-26","ids":{"openalex":"https://openalex.org/W4382202856","doi":"https://doi.org/10.1609/aaai.v37i9.26274"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i9.26274","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/26274/26046","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/26274/26046","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051512156","display_name":"Dezhi Yang","orcid":"https://orcid.org/0000-0003-3469-0102"},"institutions":[{"id":"https://openalex.org/I154099455","display_name":"Shandong University","ror":"https://ror.org/0207yh398","country_code":"CN","type":"education","lineage":["https://openalex.org/I154099455"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dezhi Yang","raw_affiliation_strings":["Shandong University"],"affiliations":[{"raw_affiliation_string":"Shandong University","institution_ids":["https://openalex.org/I154099455"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101154912","display_name":"Guoxian Yu","orcid":null},"institutions":[{"id":"https://openalex.org/I154099455","display_name":"Shandong University","ror":"https://ror.org/0207yh398","country_code":"CN","type":"education","lineage":["https://openalex.org/I154099455"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guoxian Yu","raw_affiliation_strings":["Shandong University"],"affiliations":[{"raw_affiliation_string":"Shandong University","institution_ids":["https://openalex.org/I154099455"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100384838","display_name":"Jun Wang","orcid":"https://orcid.org/0000-0002-9515-076X"},"institutions":[{"id":"https://openalex.org/I154099455","display_name":"Shandong University","ror":"https://ror.org/0207yh398","country_code":"CN","type":"education","lineage":["https://openalex.org/I154099455"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Wang","raw_affiliation_strings":["Shandong University"],"affiliations":[{"raw_affiliation_string":"Shandong University","institution_ids":["https://openalex.org/I154099455"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020974323","display_name":"Zhengtian Wu","orcid":"https://orcid.org/0000-0001-7702-5730"},"institutions":[{"id":"https://openalex.org/I308837","display_name":"Suzhou University of Science and Technology","ror":"https://ror.org/04en8wb91","country_code":"CN","type":"education","lineage":["https://openalex.org/I308837"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhengtian Wu","raw_affiliation_strings":["Suzhou University of Science and Technology"],"affiliations":[{"raw_affiliation_string":"Suzhou University of Science and Technology","institution_ids":["https://openalex.org/I308837"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5079800756","display_name":"Maozu Guo","orcid":"https://orcid.org/0000-0001-6228-6276"},"institutions":[{"id":"https://openalex.org/I62853816","display_name":"Beijing University of Civil Engineering and Architecture","ror":"https://ror.org/02yj0p855","country_code":"CN","type":"education","lineage":["https://openalex.org/I62853816"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Maozu Guo","raw_affiliation_strings":["Beijing University of Civil Engineering and Architecture"],"affiliations":[{"raw_affiliation_string":"Beijing University of Civil Engineering and Architecture","institution_ids":["https://openalex.org/I62853816"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.473,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":6,"citation_normalized_percentile":{"value":0.999754,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"37","issue":"9","first_page":"10737","last_page":"10744"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9639,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9639,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9146,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/identifiability","display_name":"Identifiability","score":0.4963997}],"concepts":[{"id":"https://openalex.org/C74197172","wikidata":"https://www.wikidata.org/wiki/Q1195339","display_name":"Directed acyclic graph","level":2,"score":0.8202585},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.6324518},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5485776},{"id":"https://openalex.org/C57830394","wikidata":"https://www.wikidata.org/wiki/Q278079","display_name":"Posterior probability","level":3,"score":0.51513755},{"id":"https://openalex.org/C122770356","wikidata":"https://www.wikidata.org/wiki/Q1656753","display_name":"Identifiability","level":2,"score":0.4963997},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.48496866},{"id":"https://openalex.org/C111350023","wikidata":"https://www.wikidata.org/wiki/Q1191869","display_name":"Markov chain Monte Carlo","level":3,"score":0.43537632},{"id":"https://openalex.org/C149441793","wikidata":"https://www.wikidata.org/wiki/Q200726","display_name":"Probability distribution","level":2,"score":0.42308438},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38372746},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3804442},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34610823},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3374519},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2932102},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.25411457},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i9.26274","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/26274/26046","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2303.05518","pdf_url":"http://arxiv.org/pdf/2303.05518","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.05518","pdf_url":"https://arxiv.org/pdf/2303.05518","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.12151","pdf_url":"http://arxiv.org/pdf/2211.12151","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i9.26274","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/26274/26046","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1668219064","https://openalex.org/W1977446441","https://openalex.org/W2073307618","https://openalex.org/W2099900459","https://openalex.org/W2116993992","https://openalex.org/W2145339207","https://openalex.org/W2151490080","https://openalex.org/W2165190832","https://openalex.org/W2168175751","https://openalex.org/W2330192890","https://openalex.org/W2397336691","https://openalex.org/W2607264901","https://openalex.org/W2755310417","https://openalex.org/W2789929276","https://openalex.org/W2802117660","https://openalex.org/W2808914202","https://openalex.org/W2885305518","https://openalex.org/W2940980190","https://openalex.org/W2949383815","https://openalex.org/W2949784712","https://openalex.org/W2952332632","https://openalex.org/W2952369555","https://openalex.org/W2980470071","https://openalex.org/W2996051514","https://openalex.org/W3104410795","https://openalex.org/W3143219376","https://openalex.org/W3187238269","https://openalex.org/W41554520","https://openalex.org/W4225847493","https://openalex.org/W4287173283","https://openalex.org/W4288101893","https://openalex.org/W4302423442","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4226070601","https://openalex.org/W3015764491","https://openalex.org/W3004696339","https://openalex.org/W3003134696","https://openalex.org/W2963141801","https://openalex.org/W2908540138","https://openalex.org/W2771160632","https://openalex.org/W2127716577","https://openalex.org/W2006317942","https://openalex.org/W1756849610"],"abstract_inverted_index":{"Learning":[0,92],"directed":[1],"acyclic":[2],"graph":[3,100],"(DAG)":[4],"that":[5,97,191],"describes":[6],"the":[7,21,47,54,64,69,76,113,128,151,162,179],"causality":[8],"of":[9,26,31,50,71,102,131,155,165],"observed":[10,27],"data":[11],"is":[12,35,67,81],"a":[13,40,122],"very":[14,82],"challenging":[15],"but":[16,63],"important":[17],"task.":[18],"Due":[19],"to":[20,38,52,104,111,126,141,177],"limited":[22],"quantity":[23],"and":[24,29,110,137,143,160,187,198],"quality":[25],"data,":[28],"non-identifiability":[30],"causal":[32,204],"graph,":[33,159],"it":[34,149],"almost":[36],"impossible":[37],"infer":[39],"single":[41],"precise":[42],"DAG.":[43],"Some":[44],"methods":[45],"approximate":[46,127],"posterior":[48,129,163,195],"distribution":[49,78,130],"DAGs":[51,80],"explore":[53],"DAG":[55,65,107],"space":[56,66],"via":[57],"Markov":[58],"chain":[59],"Monte":[60],"Carlo":[61],"(MCMC),":[62],"over":[68,79],"nature":[70],"super-exponential":[72],"growth,":[73],"accurately":[74],"characterizing":[75],"whole":[77],"intractable.":[83],"In":[84,168],"this":[85,169,175],"paper,":[86],"we":[87,171],"propose":[88],"Reinforcement":[89],"Causal":[90],"Structure":[91],"on":[93,157,174,185],"Order":[94],"Graph":[95],"(RCL-OG)":[96],"uses":[98,138],"order":[99,158],"instead":[101],"MCMC":[103],"model":[105,154,176],"different":[106,166],"topological":[108],"orderings":[109,132],"reduce":[112],"problem":[114],"size.":[115],"RCL-OG":[116,192],"first":[117],"defines":[118],"reinforcement":[119],"learning":[120],"with":[121,181],"new":[123],"reward":[124],"mechanism":[125],"in":[133],"an":[134],"efficacy":[135],"way,":[136,170],"deep":[139],"Q-learning":[140],"update":[142],"transfer":[144],"rewards":[145],"between":[146],"nodes.":[147],"Next,":[148],"obtains":[150],"probability":[152,164,196],"transition":[153],"nodes":[156],"computes":[161],"orderings.":[167],"can":[172],"sample":[173],"obtain":[178],"ordering":[180],"high":[182],"probability.":[183],"Experiments":[184],"synthetic":[186],"benchmark":[188],"datasets":[189],"show":[190],"provides":[193],"accurate":[194],"approximation":[197],"achieves":[199],"better":[200],"results":[201],"than":[202],"competitive":[203],"discovery":[205],"algorithms.":[206]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4382202856","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-24T23:21:20.114065","created_date":"2023-06-28"}