{"id":"https://openalex.org/W4382240097","doi":"https://doi.org/10.1609/aaai.v37i3.25389","title":"Multi-Stream Representation Learning for Pedestrian Trajectory Prediction","display_name":"Multi-Stream Representation Learning for Pedestrian Trajectory Prediction","publication_year":2023,"publication_date":"2023-06-26","ids":{"openalex":"https://openalex.org/W4382240097","doi":"https://doi.org/10.1609/aaai.v37i3.25389"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i3.25389","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25389/25161","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25389/25161","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5020339836","display_name":"Yuxuan Wu","orcid":"https://orcid.org/0000-0003-1333-4627"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuxuan Wu","raw_affiliation_strings":["Xi'an Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Xi'an Jiaotong University","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101525325","display_name":"Le Wang","orcid":"https://orcid.org/0000-0002-4939-1642"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Le Wang","raw_affiliation_strings":["Xi'an Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Xi'an Jiaotong University","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113827261","display_name":"Sanping Zhou","orcid":"https://orcid.org/0000-0003-4100-2304"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Sanping Zhou","raw_affiliation_strings":["Xi'an Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Xi'an Jiaotong University","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067893054","display_name":"Jinghai Duan","orcid":null},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jinghai Duan","raw_affiliation_strings":["Xi'an Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Xi'an Jiaotong University","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064272196","display_name":"Gang Hua","orcid":"https://orcid.org/0000-0001-7547-7143"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gang Hua","raw_affiliation_strings":["Wormpex AI Research"],"affiliations":[{"raw_affiliation_string":"Wormpex AI Research","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085022536","display_name":"Wei Tang","orcid":"https://orcid.org/0000-0002-2018-5474"},"institutions":[{"id":"https://openalex.org/I39422238","display_name":"University of Illinois Chicago","ror":"https://ror.org/02mpq6x41","country_code":"US","type":"funder","lineage":["https://openalex.org/I39422238"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wei Tang","raw_affiliation_strings":["University of Illinois at Chicago"],"affiliations":[{"raw_affiliation_string":"University of Illinois at Chicago","institution_ids":["https://openalex.org/I39422238"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.458,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":16,"citation_normalized_percentile":{"value":0.999722,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"37","issue":"3","first_page":"2875","last_page":"2882"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.985,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.80813336},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.5101138},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.46484843},{"id":"https://openalex.org/keywords/pedestrian-detection","display_name":"Pedestrian detection","score":0.45608968},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.42186627}],"concepts":[{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.80813336},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80217206},{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.67311764},{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.61813235},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55378574},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.5101138},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.46484843},{"id":"https://openalex.org/C2780156472","wikidata":"https://www.wikidata.org/wiki/Q2355550","display_name":"Pedestrian detection","level":3,"score":0.45608968},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.43940574},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43441865},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.42186627},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i3.25389","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25389/25161","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i3.25389","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25389/25161","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.52}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W2315876858","https://openalex.org/W2424778531","https://openalex.org/W2532516272","https://openalex.org/W2550143307","https://openalex.org/W2766836212","https://openalex.org/W2792764867","https://openalex.org/W2940129212","https://openalex.org/W2962687116","https://openalex.org/W2963001155","https://openalex.org/W2985871763","https://openalex.org/W2991653934","https://openalex.org/W2997545524","https://openalex.org/W3035096461","https://openalex.org/W3035285524","https://openalex.org/W3035339264","https://openalex.org/W3035692480","https://openalex.org/W3042505632","https://openalex.org/W3097237405","https://openalex.org/W3108908812","https://openalex.org/W3118240751","https://openalex.org/W3139425555","https://openalex.org/W3139491754","https://openalex.org/W3160050461","https://openalex.org/W3177765762","https://openalex.org/W3188129244","https://openalex.org/W3199505925","https://openalex.org/W4281887969","https://openalex.org/W4283800873","https://openalex.org/W4287237793","https://openalex.org/W4287822810","https://openalex.org/W4306985960","https://openalex.org/W4312750092","https://openalex.org/W4313041951","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W49697837","https://openalex.org/W3122828758","https://openalex.org/W2981141433","https://openalex.org/W2972620127","https://openalex.org/W2512789322","https://openalex.org/W2392100589","https://openalex.org/W2197846993","https://openalex.org/W2170799233","https://openalex.org/W2101960027","https://openalex.org/W1976827262"],"abstract_inverted_index":{"Forecasting":[0],"the":[1,41,71,74,130,166,173],"future":[2],"trajectory":[3,67],"of":[4,16,97,148],"pedestrians":[5,29],"is":[6,25,46,61],"an":[7],"important":[8],"task":[9],"in":[10,52,65,110],"computer":[11],"vision":[12],"with":[13,49,120],"a":[14,53,62,86,124],"range":[15],"applications,":[17],"from":[18],"security":[19],"cameras":[20],"to":[21,81,92,134],"autonomous":[22],"driving.":[23],"It":[24],"very":[26],"challenging":[27],"because":[28],"not":[30],"only":[31],"move":[32],"individually":[33],"across":[34],"time":[35],"but":[36],"also":[37],"interact":[38],"spatially,":[39],"and":[40,43,77,105,114,138,145,163,165],"spatial":[42,104],"temporal":[44],"information":[45,80],"deeply":[47],"coupled":[48],"one":[50],"another":[51],"multi-agent":[54],"scenario.":[55],"Learning":[56],"such":[57],"complex":[58,94,142],"spatio-temporal":[59,79,95,107,143],"correlation":[60,108],"fundamental":[63],"issue":[64],"pedestrian":[66,98],"prediction.":[68],"Inspired":[69],"by":[70,123,141],"procedure":[72],"that":[73],"hippocampus":[75],"processes":[76],"integrates":[78],"form":[82],"memories,":[83],"we":[84,101,128],"propose":[85],"novel":[87],"multi-stream":[88],"representation":[89],"learning":[90],"module":[91],"learn":[93,102],"features":[96,109,119],"trajectory.":[99],"Specifically,":[100],"temporal,":[103],"cross":[106],"three":[111],"respective":[112],"pathways":[113],"then":[115],"adaptively":[116],"integrate":[117],"these":[118],"learnable":[121],"weights":[122],"gated":[125],"network.":[126],"Besides,":[127],"leverage":[129],"sparse":[131],"attention":[132],"gate":[133],"select":[135],"informative":[136],"interactions":[137],"correlations":[139],"brought":[140],"modeling":[144],"reduce":[146],"complexity":[147],"our":[149,153,170],"model.":[150],"We":[151],"evaluate":[152],"proposed":[154],"method":[155,171],"on":[156],"two":[157],"commonly":[158],"used":[159],"datasets,":[160],"i.e.":[161],"ETH-UCY":[162],"SDD,":[164],"experimental":[167],"results":[168],"demonstrate":[169],"achieves":[172],"state-of-the-art":[174],"performance.":[175],"Code:":[176],"https://github.com/YuxuanIAIR/MSRL-master":[177]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4382240097","counts_by_year":[{"year":2025,"cited_by_count":4},{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":3}],"updated_date":"2025-04-24T01:48:29.921752","created_date":"2023-06-28"}