{"id":"https://openalex.org/W4382458867","doi":"https://doi.org/10.1609/aaai.v37i2.25349","title":"Calibrated Teacher for Sparsely Annotated Object Detection","display_name":"Calibrated Teacher for Sparsely Annotated Object Detection","publication_year":2023,"publication_date":"2023-06-26","ids":{"openalex":"https://openalex.org/W4382458867","doi":"https://doi.org/10.1609/aaai.v37i2.25349"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i2.25349","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25349/25121","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25349/25121","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101892838","display_name":"Haohan Wang","orcid":"https://orcid.org/0000-0003-3451-6884"},"institutions":[{"id":"https://openalex.org/I4210114105","display_name":"Tsinghua\u2013Berkeley Shenzhen Institute","ror":"https://ror.org/02hhwwz98","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210114105","https://openalex.org/I95457486","https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haohan Wang","raw_affiliation_strings":["Tsinghua Shenzhen International Graduate School"],"affiliations":[{"raw_affiliation_string":"Tsinghua Shenzhen International Graduate School","institution_ids":["https://openalex.org/I4210114105"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100322342","display_name":"Liang Liu","orcid":"https://orcid.org/0000-0001-7910-810X"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Liang Liu","raw_affiliation_strings":["Tencent"],"affiliations":[{"raw_affiliation_string":"Tencent","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047107469","display_name":"Boshen Zhang","orcid":null},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Boshen Zhang","raw_affiliation_strings":["Tencent"],"affiliations":[{"raw_affiliation_string":"Tencent","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021861529","display_name":"Jiangning Zhang","orcid":"https://orcid.org/0000-0001-8891-6766"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiangning Zhang","raw_affiliation_strings":["Tencent"],"affiliations":[{"raw_affiliation_string":"Tencent","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038706122","display_name":"Wuhao Zhang","orcid":null},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wuhao Zhang","raw_affiliation_strings":["Tencent"],"affiliations":[{"raw_affiliation_string":"Tencent","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012172321","display_name":"Zhenye Gan","orcid":"https://orcid.org/0000-0003-1477-4958"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenye Gan","raw_affiliation_strings":["Tencent"],"affiliations":[{"raw_affiliation_string":"Tencent","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028731909","display_name":"Yabiao Wang","orcid":"https://orcid.org/0000-0002-6592-8411"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yabiao Wang","raw_affiliation_strings":["Tencent"],"affiliations":[{"raw_affiliation_string":"Tencent","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023834700","display_name":"Chengjie Wang","orcid":"https://orcid.org/0000-0003-4216-8090"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]},{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chengjie Wang","raw_affiliation_strings":["Tencent\nShanghai Jiao Tong University"],"affiliations":[{"raw_affiliation_string":"Tencent\nShanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930","https://openalex.org/I2250653659"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028229824","display_name":"Haoqian Wang","orcid":"https://orcid.org/0000-0003-2792-8469"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haoqian Wang","raw_affiliation_strings":["Tsinghua Shenzhen International Graduate School, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua Shenzhen International Graduate School, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.659,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":5,"citation_normalized_percentile":{"value":0.999599,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":92},"biblio":{"volume":"37","issue":"2","first_page":"2519","last_page":"2527"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/complement","display_name":"Complement","score":0.7185689},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.5041677},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.42355722}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80356306},{"id":"https://openalex.org/C112313634","wikidata":"https://www.wikidata.org/wiki/Q7886648","display_name":"Complement (music)","level":5,"score":0.7185689},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.64514107},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.58573925},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.5428131},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53698},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5349423},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.5041677},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.48787856},{"id":"https://openalex.org/C2776650193","wikidata":"https://www.wikidata.org/wiki/Q264661","display_name":"Obstacle","level":2,"score":0.47895792},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.42355722},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41885594},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3603611},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C188082640","wikidata":"https://www.wikidata.org/wiki/Q1780899","display_name":"Complementation","level":4,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C127716648","wikidata":"https://www.wikidata.org/wiki/Q104053","display_name":"Phenotype","level":3,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i2.25349","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25349/25121","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.07582","pdf_url":"https://arxiv.org/pdf/2303.07582","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i2.25349","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25349/25121","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.7,"id":"https://metadata.un.org/sdg/8","display_name":"Decent work and economic growth"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1598033630","https://openalex.org/W1618905105","https://openalex.org/W1861492603","https://openalex.org/W2194775991","https://openalex.org/W2254249950","https://openalex.org/W2504335775","https://openalex.org/W2626967530","https://openalex.org/W2808867199","https://openalex.org/W2884561390","https://openalex.org/W2886335102","https://openalex.org/W2953070460","https://openalex.org/W2962766617","https://openalex.org/W2969510879","https://openalex.org/W2982770724","https://openalex.org/W3021332602","https://openalex.org/W3096609285","https://openalex.org/W3102710196","https://openalex.org/W3106250896","https://openalex.org/W3122239467","https://openalex.org/W3126207803","https://openalex.org/W3130976481","https://openalex.org/W3175854195","https://openalex.org/W4226084635","https://openalex.org/W4239072543","https://openalex.org/W4287868498","https://openalex.org/W4288325606","https://openalex.org/W4293584584","https://openalex.org/W4394657967","https://openalex.org/W639708223"],"related_works":["https://openalex.org/W4225418833","https://openalex.org/W3209087300","https://openalex.org/W3160733999","https://openalex.org/W3081076175","https://openalex.org/W3044102606","https://openalex.org/W2971687826","https://openalex.org/W2970686063","https://openalex.org/W2756241593","https://openalex.org/W2563020992","https://openalex.org/W2095705906"],"abstract_inverted_index":{"Fully":[0],"supervised":[1],"object":[2,52,91],"detection":[3,53],"requires":[4],"training":[5,86,146],"images":[6],"in":[7,36,84,144,226],"which":[8,124],"all":[9,222],"instances":[10],"are":[11,104],"annotated.":[12],"This":[13],"is":[14,68,82,131],"actually":[15],"impractical":[16],"due":[17],"to":[18,70,106,109,114,134],"the":[19,26,33,45,62,71,74,79,94,125,129,154,163,183,190,199,206,209],"high":[20],"labor":[21],"and":[22,25,43,88,103,167,202],"time":[23],"costs":[24],"unavoidable":[27],"missing":[28,63,200],"annotations.":[29,64],"As":[30],"a":[31,66,120,150,174],"result,":[32],"incomplete":[34],"annotation":[35],"each":[37],"image":[38],"could":[39,161],"provide":[40],"misleading":[41],"supervision":[42],"harm":[44],"training.":[46],"Recent":[47],"works":[48,204],"on":[49],"sparsely":[50],"annotated":[51],"alleviate":[54],"this":[55,116,140],"problem":[56],"by":[57,198],"generating":[58],"pseudo":[59,75],"labels":[60],"for":[61,182],"Such":[65],"mechanism":[67],"sensitive":[69],"threshold":[72,81,166],"of":[73,123,128,153,193,208],"label":[76],"score.":[77],"However,":[78],"effective":[80,177],"different":[83,85,90,142,145,223],"stages":[87,147],"among":[89],"detectors.":[92,111],"Therefore,":[93],"current":[95],"methods":[96,217],"with":[97],"fixed":[98,165],"thresholds":[99],"have":[100],"sub-optimal":[101],"performance,":[102],"difficult":[105],"be":[107,230],"applied":[108],"other":[110],"In":[112,139],"order":[113],"resolve":[115],"obstacle,":[117],"we":[118,172],"propose":[119],"Calibrated":[121],"Teacher,":[122],"confidence":[126],"estimation":[127],"prediction":[130],"well":[132],"calibrated":[133],"match":[135],"its":[136],"real":[137],"precision.":[138],"way,":[141],"detectors":[143,160],"would":[148],"share":[149,162],"similar":[151],"distribution":[152],"output":[155],"confidence,":[156],"so":[157],"that":[158,215],"multiple":[159],"same":[164],"achieve":[168],"better":[169],"performance.":[170],"Furthermore,":[171],"present":[173],"simple":[175],"but":[176],"Focal":[178],"IoU":[179],"Weight":[180],"(FIoU)":[181],"classification":[184],"loss.":[185],"FIoU":[186],"aims":[187],"at":[188,232],"reducing":[189],"loss":[191],"weight":[192],"false":[194],"negative":[195],"samples":[196],"caused":[197],"annotation,":[201],"thus":[203],"as":[205],"complement":[207],"teacher-student":[210],"paradigm.":[211],"Extensive":[212],"experiments":[213],"show":[214],"our":[216],"set":[218],"new":[219],"state-of-the-art":[220],"under":[221],"sparse":[224],"settings":[225],"COCO.":[227],"Code":[228],"will":[229],"available":[231],"https://github.com/Whileherham/CalibratedTeacher.":[233]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4382458867","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-04T16:45:24.292738","created_date":"2023-06-29"}