{"id":"https://openalex.org/W4382466831","doi":"https://doi.org/10.1609/aaai.v37i2.25330","title":"Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation","display_name":"Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation","publication_year":2023,"publication_date":"2023-06-26","ids":{"openalex":"https://openalex.org/W4382466831","doi":"https://doi.org/10.1609/aaai.v37i2.25330"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i2.25330","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25330/25102","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25330/25102","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008451144","display_name":"Wanjuan Su","orcid":"https://orcid.org/0000-0002-5497-4682"},"institutions":[{"id":"https://openalex.org/I47720641","display_name":"Huazhong University of Science and Technology","ror":"https://ror.org/00p991c53","country_code":"CN","type":"education","lineage":["https://openalex.org/I47720641"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wanjuan Su","raw_affiliation_strings":["Huazhong University of Science and Technology"],"affiliations":[{"raw_affiliation_string":"Huazhong University of Science and Technology","institution_ids":["https://openalex.org/I47720641"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5087239641","display_name":"Wenbing Tao","orcid":"https://orcid.org/0000-0003-3284-864X"},"institutions":[{"id":"https://openalex.org/I47720641","display_name":"Huazhong University of Science and Technology","ror":"https://ror.org/00p991c53","country_code":"CN","type":"education","lineage":["https://openalex.org/I47720641"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenbing Tao","raw_affiliation_strings":["Huazhong University of Science and Technology"],"affiliations":[{"raw_affiliation_string":"Huazhong University of Science and Technology","institution_ids":["https://openalex.org/I47720641"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.319,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":11,"citation_normalized_percentile":{"value":0.999599,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"37","issue":"2","first_page":"2348","last_page":"2356"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9899,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10638","display_name":"Optical measurement and interference techniques","score":0.9777,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/smoothing","display_name":"Smoothing","score":0.5194318},{"id":"https://openalex.org/keywords/upsampling","display_name":"Upsampling","score":0.477577},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.4682568},{"id":"https://openalex.org/keywords/depth-map","display_name":"Depth map","score":0.44487306}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7723974},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6083173},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.60294044},{"id":"https://openalex.org/C3770464","wikidata":"https://www.wikidata.org/wiki/Q775963","display_name":"Smoothing","level":2,"score":0.5194318},{"id":"https://openalex.org/C110384440","wikidata":"https://www.wikidata.org/wiki/Q1143270","display_name":"Upsampling","level":3,"score":0.477577},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.46980366},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.4682568},{"id":"https://openalex.org/C141268832","wikidata":"https://www.wikidata.org/wiki/Q2940499","display_name":"Depth map","level":3,"score":0.44487306},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.43368703},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.43177068},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.41101322},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.37691045},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.29457277},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.2262735},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i2.25330","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25330/25102","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v37i2.25330","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/25330/25102","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.47,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1901129140","https://openalex.org/W2205172244","https://openalex.org/W2338968644","https://openalex.org/W2519683295","https://openalex.org/W2520322935","https://openalex.org/W2741885505","https://openalex.org/W2884561390","https://openalex.org/W2926429807","https://openalex.org/W2962793285","https://openalex.org/W2967693513","https://openalex.org/W3034530552","https://openalex.org/W3034564916","https://openalex.org/W3035257660","https://openalex.org/W3069256834","https://openalex.org/W3097305369","https://openalex.org/W3102132650","https://openalex.org/W3109908659","https://openalex.org/W3163849933","https://openalex.org/W3170262190","https://openalex.org/W3181256344","https://openalex.org/W3202682771","https://openalex.org/W3204267695","https://openalex.org/W3204354488","https://openalex.org/W4283122842","https://openalex.org/W4285130569","https://openalex.org/W4295312788","https://openalex.org/W4312253793","https://openalex.org/W4312259458","https://openalex.org/W4312593100","https://openalex.org/W4312725665","https://openalex.org/W4312725793","https://openalex.org/W4312890257","https://openalex.org/W4313028367","https://openalex.org/W4313143504"],"related_works":["https://openalex.org/W3005941135","https://openalex.org/W2795471480","https://openalex.org/W2537394792","https://openalex.org/W2520322935","https://openalex.org/W2155505427","https://openalex.org/W2140069086","https://openalex.org/W2122353381","https://openalex.org/W2104324080","https://openalex.org/W2086087387","https://openalex.org/W2027589961"],"abstract_inverted_index":{"Over":[0],"the":[1,45,49,91,111,120,132,166],"years,":[2],"learning-based":[3,183],"multi-view":[4,65],"stereo":[5,66],"methods":[6],"have":[7],"achieved":[8],"great":[9],"success":[10],"based":[11],"on":[12,169],"their":[13],"coarse-to-fine":[14],"depth":[15,41,50,71,98],"estimation":[16,76,121],"frameworks.":[17],"However,":[18],"3D":[19],"CNN-based":[20],"cost":[21],"volume":[22],"regularization":[23],"inevitably":[24],"leads":[25],"to":[26,33,88,109,138],"over-smoothing":[27],"problems":[28],"at":[29,77,189],"object":[30,55],"boundaries":[31],"due":[32],"its":[34],"smooth":[35],"properties.":[36],"Moreover,":[37],"discrete":[38],"and":[39,54,94,130,142,158,172,176],"sparse":[40],"hypothesis":[42],"sampling":[43],"exacerbates":[44],"difficulty":[46],"in":[47],"recovering":[48],"of":[51],"thin":[52],"structures":[53],"boundaries.":[56],"To":[57,73],"this":[58],"end,":[59],"we":[60,124],"present":[61],"an":[62],"Efficient":[63],"edge-Preserving":[64],"Network":[67],"(EPNet)":[68],"for":[69,114],"practical":[70],"estimation.":[72,99],"keep":[74],"delicate":[75],"details,":[78],"a":[79,102,126],"Hierarchical":[80],"Edge-Preserving":[81],"Residual":[82],"learning":[83],"(HEPR)":[84],"module":[85],"is":[86,107],"proposed":[87,108],"progressively":[89],"rectify":[90],"upsampling":[92],"errors":[93],"help":[95],"refine":[96],"multi-scale":[97],"After":[100],"that,":[101],"Cross-view":[103],"Photometric":[104],"Consistency":[105],"(CPC)":[106],"enhance":[110],"gradient":[112],"flow":[113],"detailed":[115],"structures,":[116],"which":[117],"further":[118],"boosts":[119],"accuracy.":[122],"Last,":[123],"design":[125],"lightweight":[127],"cascade":[128],"framework":[129],"inject":[131],"above":[133],"two":[134],"strategies":[135],"into":[136],"it":[137],"achieve":[139],"better":[140],"efficiency":[141],"performance":[143,153],"trade-offs.":[144],"Extensive":[145],"experiments":[146],"show":[147],"that":[148],"our":[149,163],"method":[150,164],"achieves":[151],"state-of-the-art":[152],"with":[154],"fast":[155],"inference":[156],"speed":[157],"low":[159],"memory":[160],"usage.":[161],"Notably,":[162],"tops":[165],"first":[167],"place":[168],"challenging":[170],"Tanks":[171],"Temples":[173],"advanced":[174],"dataset":[175],"ETH3D":[177],"high-res":[178],"benchmark":[179],"among":[180],"all":[181],"published":[182],"methods.":[184],"Code":[185],"will":[186],"be":[187],"available":[188],"https://github.com/susuwj/EPNet.":[190]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4382466831","counts_by_year":[{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-04T11:32:32.462142","created_date":"2023-06-29"}