{"id":"https://openalex.org/W3046384803","doi":"https://doi.org/10.1609/aaai.v35i9.16937","title":"Learning with Safety Constraints: Sample Complexity of Reinforcement Learning for Constrained MDPs","display_name":"Learning with Safety Constraints: Sample Complexity of Reinforcement Learning for Constrained MDPs","publication_year":2021,"publication_date":"2021-05-18","ids":{"openalex":"https://openalex.org/W3046384803","doi":"https://doi.org/10.1609/aaai.v35i9.16937","mag":"3046384803"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i9.16937","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16937/16744","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16937/16744","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5056952829","display_name":"Aria HasanzadeZonuzy","orcid":"https://orcid.org/0000-0002-9701-1405"},"institutions":[{"id":"https://openalex.org/I2801613365","display_name":"Mitchell Institute","ror":"https://ror.org/03ds72003","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I2801613365"]},{"id":"https://openalex.org/I91045830","display_name":"Texas A&M University","ror":"https://ror.org/01f5ytq51","country_code":"US","type":"funder","lineage":["https://openalex.org/I91045830"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Aria HasanzadeZonuzy","raw_affiliation_strings":["Texas A&M University"],"affiliations":[{"raw_affiliation_string":"Texas A&M University","institution_ids":["https://openalex.org/I2801613365","https://openalex.org/I91045830"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005327552","display_name":"Archana Bura","orcid":"https://orcid.org/0000-0001-7897-2473"},"institutions":[{"id":"https://openalex.org/I2801613365","display_name":"Mitchell Institute","ror":"https://ror.org/03ds72003","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I2801613365"]},{"id":"https://openalex.org/I91045830","display_name":"Texas A&M University","ror":"https://ror.org/01f5ytq51","country_code":"US","type":"funder","lineage":["https://openalex.org/I91045830"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Archana Bura","raw_affiliation_strings":["Texas A&M University"],"affiliations":[{"raw_affiliation_string":"Texas A&M University","institution_ids":["https://openalex.org/I2801613365","https://openalex.org/I91045830"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053096993","display_name":"Dileep Kalathil","orcid":"https://orcid.org/0000-0001-7968-5185"},"institutions":[{"id":"https://openalex.org/I2801613365","display_name":"Mitchell Institute","ror":"https://ror.org/03ds72003","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I2801613365"]},{"id":"https://openalex.org/I91045830","display_name":"Texas A&M University","ror":"https://ror.org/01f5ytq51","country_code":"US","type":"funder","lineage":["https://openalex.org/I91045830"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dileep Kalathil","raw_affiliation_strings":["Texas A&M University"],"affiliations":[{"raw_affiliation_string":"Texas A&M University","institution_ids":["https://openalex.org/I2801613365","https://openalex.org/I91045830"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005504863","display_name":"Srinivas Shakkottai","orcid":"https://orcid.org/0000-0002-5882-6433"},"institutions":[{"id":"https://openalex.org/I2801613365","display_name":"Mitchell Institute","ror":"https://ror.org/03ds72003","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I2801613365"]},{"id":"https://openalex.org/I91045830","display_name":"Texas A&M University","ror":"https://ror.org/01f5ytq51","country_code":"US","type":"funder","lineage":["https://openalex.org/I91045830"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Srinivas Shakkottai","raw_affiliation_strings":["Texas A&M University"],"affiliations":[{"raw_affiliation_string":"Texas A&M University","institution_ids":["https://openalex.org/I2801613365","https://openalex.org/I91045830"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.786,"has_fulltext":false,"cited_by_count":9,"citation_normalized_percentile":{"value":0.650695,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":"35","issue":"9","first_page":"7667","last_page":"7674"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10142","display_name":"Formal Methods in Verification","score":0.9884,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9849,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.6092054},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.48847973}],"concepts":[{"id":"https://openalex.org/C106189395","wikidata":"https://www.wikidata.org/wiki/Q176789","display_name":"Markov decision process","level":3,"score":0.7557548},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.72804075},{"id":"https://openalex.org/C2776036281","wikidata":"https://www.wikidata.org/wiki/Q48769818","display_name":"Constraint (computer-aided design)","level":2,"score":0.6134779},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6107256},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.6092054},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5986097},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.593144},{"id":"https://openalex.org/C44616089","wikidata":"https://www.wikidata.org/wiki/Q30158686","display_name":"Constraint satisfaction","level":3,"score":0.57596743},{"id":"https://openalex.org/C39927690","wikidata":"https://www.wikidata.org/wiki/Q11197","display_name":"Logarithm","level":2,"score":0.5544834},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.48847973},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4728689},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.4222615},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3244486},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.3185982},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.22173771},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i9.16937","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16937/16744","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2008.00311","pdf_url":"https://arxiv.org/pdf/2008.00311","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i9.16937","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16937/16744","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.79,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1061340565","https://openalex.org/W1503109067","https://openalex.org/W1518931405","https://openalex.org/W1702271787","https://openalex.org/W1786332878","https://openalex.org/W1915973093","https://openalex.org/W1965634470","https://openalex.org/W1969276875","https://openalex.org/W1988526405","https://openalex.org/W2002240881","https://openalex.org/W2070570138","https://openalex.org/W2073314543","https://openalex.org/W2103012681","https://openalex.org/W2110005947","https://openalex.org/W2119567691","https://openalex.org/W2119852681","https://openalex.org/W2120678009","https://openalex.org/W2128347943","https://openalex.org/W2750990725","https://openalex.org/W2788014517","https://openalex.org/W2804791273","https://openalex.org/W2963475649","https://openalex.org/W2963568654","https://openalex.org/W2963582321","https://openalex.org/W2964299116","https://openalex.org/W2964340170","https://openalex.org/W2966956172","https://openalex.org/W2970890202","https://openalex.org/W2982256055","https://openalex.org/W2990389059","https://openalex.org/W2998619042","https://openalex.org/W3001756029","https://openalex.org/W3009922106","https://openalex.org/W3034840734","https://openalex.org/W3049624187","https://openalex.org/W3080734044","https://openalex.org/W3176971532","https://openalex.org/W4235688125","https://openalex.org/W4287829052","https://openalex.org/W4294562617","https://openalex.org/W4297824337","https://openalex.org/W4298023569"],"related_works":["https://openalex.org/W4390718435","https://openalex.org/W4390549206","https://openalex.org/W4237784285","https://openalex.org/W3137171911","https://openalex.org/W2952185452","https://openalex.org/W2798106756","https://openalex.org/W2380075625","https://openalex.org/W2374712251","https://openalex.org/W2046736294","https://openalex.org/W1519526186"],"abstract_inverted_index":{"Many":[0],"physical":[1],"systems":[2],"have":[3],"underlying":[4],"safety":[5,68],"considerations":[6],"that":[7,9,132,155,165],"require":[8],"the":[10,14,26,38,41,52,65,71,120,135,140,143,159,166],"policy":[11],"employed":[12],"ensures":[13],"satisfaction":[15],"of":[16,19,28,73,81,95,139,146,161],"a":[17,29,78,88,100,112,153],"set":[18],"constraints.":[20],"The":[21],"analytical":[22],"formulation":[23],"usually":[24],"takes":[25],"form":[27],"Constrained":[30],"Markov":[31],"Decision":[32],"Process":[33],"(CMDP).":[34],"We":[35,91],"focus":[36],"on":[37],"case":[39],"where":[40],"CMDP":[42],"is":[43,62,122,131,156],"unknown,":[44],"and":[45,54,70,85,114],"RL":[46,96,148],"algorithms":[47,149],"obtain":[48],"samples":[49,74,106,125],"to":[50,63,76,110,134],"discover":[51],"model":[53,102,121],"compute":[55],"an":[56,116],"optimal":[57],"constrained":[58,147],"policy.":[59],"Our":[60,128],"goal":[61],"characterize":[64],"relationship":[66],"between":[67],"constraints":[69],"number":[72,160],"needed":[75],"ensure":[77],"desired":[79],"level":[80],"accuracy---both":[82],"objective":[83],"maximization":[84],"constraint":[86],"satisfaction---in":[87],"PAC":[89],"sense.":[90],"explore":[92],"two":[93],"classes":[94],"algorithms,":[97],"namely,":[98],"(i)":[99],"generative":[101],"based":[103],"approach,":[104,118],"wherein":[105,119],"are":[107,126,150],"taken":[108],"initially":[109],"estimate":[111],"model,":[113],"(ii)":[115],"online":[117],"updated":[123],"as":[124],"obtained.":[127],"main":[129],"finding":[130],"compared":[133],"best":[136],"known":[137],"bounds":[138],"unconstrained":[141],"regime,":[142],"sample":[144],"complexity":[145],"increased":[151],"by":[152],"factor":[154],"logarithmic":[157],"in":[158,172],"constraints,":[162],"which":[163],"suggests":[164],"approach":[167],"may":[168],"be":[169],"easily":[170],"utilized":[171],"real":[173],"systems.":[174]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3046384803","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":3},{"year":2020,"cited_by_count":1}],"updated_date":"2025-03-21T16:00:23.704501","created_date":"2020-08-07"}