{"id":"https://openalex.org/W3176081970","doi":"https://doi.org/10.1609/aaai.v35i8.16858","title":"On Online Optimization: Dynamic Regret Analysis of Strongly Convex and Smooth Problems","display_name":"On Online Optimization: Dynamic Regret Analysis of Strongly Convex and Smooth Problems","publication_year":2021,"publication_date":"2021-05-18","ids":{"openalex":"https://openalex.org/W3176081970","doi":"https://doi.org/10.1609/aaai.v35i8.16858","mag":"3176081970"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i8.16858","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16858/16665","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16858/16665","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5087313193","display_name":"T. T. Chang","orcid":"https://orcid.org/0000-0002-0037-6564"},"institutions":[{"id":"https://openalex.org/I2801613365","display_name":"Mitchell Institute","ror":"https://ror.org/03ds72003","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I2801613365"]},{"id":"https://openalex.org/I91045830","display_name":"Texas A&M University","ror":"https://ror.org/01f5ytq51","country_code":"US","type":"education","lineage":["https://openalex.org/I91045830"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ting-Jui Chang","raw_affiliation_strings":["Texas A&M University"],"affiliations":[{"raw_affiliation_string":"Texas A&M University","institution_ids":["https://openalex.org/I2801613365","https://openalex.org/I91045830"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5040922600","display_name":"Shahin Shahrampour","orcid":"https://orcid.org/0000-0003-3093-8510"},"institutions":[{"id":"https://openalex.org/I2801613365","display_name":"Mitchell Institute","ror":"https://ror.org/03ds72003","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I2801613365"]},{"id":"https://openalex.org/I91045830","display_name":"Texas A&M University","ror":"https://ror.org/01f5ytq51","country_code":"US","type":"education","lineage":["https://openalex.org/I91045830"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shahin Shahrampour","raw_affiliation_strings":["Texas A&M University"],"affiliations":[{"raw_affiliation_string":"Texas A&M University","institution_ids":["https://openalex.org/I2801613365","https://openalex.org/I91045830"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.214,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":11,"citation_normalized_percentile":{"value":0.999144,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"35","issue":"8","first_page":"6966","last_page":"6973"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9798,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9783,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.620638}],"concepts":[{"id":"https://openalex.org/C50817715","wikidata":"https://www.wikidata.org/wiki/Q79895177","display_name":"Regret","level":2,"score":0.714537},{"id":"https://openalex.org/C77553402","wikidata":"https://www.wikidata.org/wiki/Q13222579","display_name":"Upper and lower bounds","level":2,"score":0.7128254},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.68607783},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.6511025},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.6299609},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.620638},{"id":"https://openalex.org/C130432447","wikidata":"https://www.wikidata.org/wiki/Q11420049","display_name":"Quartic function","level":2,"score":0.59052396},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.55636567},{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.51929945},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.49154314},{"id":"https://openalex.org/C145446738","wikidata":"https://www.wikidata.org/wiki/Q319913","display_name":"Convex function","level":3,"score":0.49122947},{"id":"https://openalex.org/C182306322","wikidata":"https://www.wikidata.org/wiki/Q1779371","display_name":"Order (exchange)","level":2,"score":0.4415928},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.19050846},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.1389435},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.1298584},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.10823023},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.080512494},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0744777},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i8.16858","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16858/16665","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i8.16858","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16858/16665","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1551269584","https://openalex.org/W1878322007","https://openalex.org/W1979289676","https://openalex.org/W2127142495","https://openalex.org/W2143343660","https://openalex.org/W2148825261","https://openalex.org/W2186453173","https://openalex.org/W2515145310","https://openalex.org/W2890624904","https://openalex.org/W2949606546","https://openalex.org/W2952817195","https://openalex.org/W2964188247","https://openalex.org/W2964309292","https://openalex.org/W2998089837","https://openalex.org/W3004342364","https://openalex.org/W3004552127","https://openalex.org/W3011017059","https://openalex.org/W3045976650","https://openalex.org/W3123661679","https://openalex.org/W36041826","https://openalex.org/W4205841652"],"related_works":["https://openalex.org/W4387635768","https://openalex.org/W4376155396","https://openalex.org/W4313177131","https://openalex.org/W4311589891","https://openalex.org/W2971351794","https://openalex.org/W2527791220","https://openalex.org/W2174986909","https://openalex.org/W2155070487","https://openalex.org/W2101991911","https://openalex.org/W1947085858"],"abstract_inverted_index":{"The":[0,130],"regret":[1,131],"bound":[2,53,67,132,168],"of":[3,13,24,45,90,124,133,141,169],"dynamic":[4],"online":[5,60,81,109],"learning":[6],"algorithms":[7],"is":[8,128,135],"often":[9],"expressed":[10],"in":[11,16],"terms":[12],"the":[14,17,22,25,42,46,103,115,118,125,138,142],"variation":[15],"function":[18,126],"sequence":[19,27,48,127,144],"(V_T)":[20],"and/or":[21],"path-length":[23,44,140],"minimizer":[26,47,143],"after":[28],"T":[29],"rounds.":[30],"For":[31],"strongly":[32],"convex":[33],"and":[34,120],"smooth":[35],"functions,":[36],"Zhang":[37],"et":[38],"al.":[39],"(2017)":[40],"establish":[41],"squared":[43],"(C*_{2,T})":[49],"as":[50],"a":[51,87],"lower":[52,66],"on":[54,79,171],"regret.":[55,172],"They":[56],"also":[57],"show":[58,85,155],"that":[59,86,156],"gradient":[61,70,96],"descent":[62],"(OGD)":[63],"achieves":[64,92],"this":[65,75],"using":[68,158],"multiple":[69,159],"queries":[71],"per":[72,98],"round.":[73],"In":[74],"paper,":[76],"we":[77,163],"focus":[78],"unconstrained":[80],"optimization.":[82],"We":[83,106,153],"first":[84,119],"preconditioned":[88],"variant":[89],"OGD":[91],"O(min{C*_T,C*_{2,T}})":[93],"with":[94],"one":[95],"query":[97],"round":[99],"(C*_T":[100],"refers":[101],"to":[102],"normal":[104],"path-length).":[105],"then":[107],"propose":[108],"optimistic":[110],"Newton":[111],"(OON)":[112],"method":[113],"for":[114,161],"case":[116],"when":[117],"second":[121],"order":[122],"information":[123],"predictable.":[129],"OON":[134],"captured":[136],"via":[137],"quartic":[139],"(C*_{4,T}),":[145],"which":[146],"can":[147,164],"be":[148],"much":[149],"smaller":[150],"than":[151],"C*_{2,T}.":[152],"finally":[154],"by":[157],"gradients":[160],"OGD,":[162],"achieve":[165],"an":[166],"upper":[167],"O(min{C*_{2,T},V_T})":[170]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3176081970","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":2}],"updated_date":"2025-01-02T07:44:21.943129","created_date":"2021-07-05"}