{"id":"https://openalex.org/W3174205678","doi":"https://doi.org/10.1609/aaai.v35i2.16259","title":"Frequency Consistent Adaptation for Real World Super Resolution","display_name":"Frequency Consistent Adaptation for Real World Super Resolution","publication_year":2021,"publication_date":"2021-05-18","ids":{"openalex":"https://openalex.org/W3174205678","doi":"https://doi.org/10.1609/aaai.v35i2.16259","mag":"3174205678"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i2.16259","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16259/16066","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16259/16066","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5055612307","display_name":"Xiaozhong Ji","orcid":null},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]},{"id":"https://openalex.org/I4210102458","display_name":"Novel (United States)","ror":"https://ror.org/00z5k4y41","country_code":"US","type":"company","lineage":["https://openalex.org/I4210102458"]}],"countries":["CN","US"],"is_corresponding":false,"raw_author_name":"Xiaozhong Ji","raw_affiliation_strings":["National Key Lab for Novel Software Technology, Nanjing University"],"affiliations":[{"raw_affiliation_string":"National Key Lab for Novel Software Technology, Nanjing University","institution_ids":["https://openalex.org/I881766915","https://openalex.org/I4210102458"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011901269","display_name":"Guangpin Tao","orcid":null},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]},{"id":"https://openalex.org/I4210102458","display_name":"Novel (United States)","ror":"https://ror.org/00z5k4y41","country_code":"US","type":"company","lineage":["https://openalex.org/I4210102458"]}],"countries":["CN","US"],"is_corresponding":false,"raw_author_name":"Guangpin Tao","raw_affiliation_strings":["National Key Lab for Novel Software Technology, Nanjing University"],"affiliations":[{"raw_affiliation_string":"National Key Lab for Novel Software Technology, Nanjing University","institution_ids":["https://openalex.org/I881766915","https://openalex.org/I4210102458"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032059481","display_name":"Yun Cao","orcid":"https://orcid.org/0000-0003-3433-0764"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yun Cao","raw_affiliation_strings":["Tencent Youtu Lab"],"affiliations":[{"raw_affiliation_string":"Tencent Youtu Lab","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029021362","display_name":"Ying Tai","orcid":"https://orcid.org/0000-0002-4665-6852"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ying Tai","raw_affiliation_strings":["Tencent Youtu Lab"],"affiliations":[{"raw_affiliation_string":"Tencent Youtu Lab","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061696740","display_name":"Tong L\u00fc","orcid":"https://orcid.org/0000-0002-7051-5347"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]},{"id":"https://openalex.org/I4210102458","display_name":"Novel (United States)","ror":"https://ror.org/00z5k4y41","country_code":"US","type":"company","lineage":["https://openalex.org/I4210102458"]}],"countries":["CN","US"],"is_corresponding":false,"raw_author_name":"Tong Lu","raw_affiliation_strings":["National Key Lab for Novel Software Technology, Nanjing University"],"affiliations":[{"raw_affiliation_string":"National Key Lab for Novel Software Technology, Nanjing University","institution_ids":["https://openalex.org/I881766915","https://openalex.org/I4210102458"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023834700","display_name":"Chengjie Wang","orcid":"https://orcid.org/0000-0003-4216-8090"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chengjie Wang","raw_affiliation_strings":["Tencent Youtu Lab"],"affiliations":[{"raw_affiliation_string":"Tencent Youtu Lab","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101540189","display_name":"Jilin Li","orcid":null},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jilin Li","raw_affiliation_strings":["Tencent Youtu Lab"],"affiliations":[{"raw_affiliation_string":"Tencent Youtu Lab","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5112601777","display_name":"Feiyue Huang","orcid":null},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Feiyue Huang","raw_affiliation_strings":["Tencent Youtu Lab"],"affiliations":[{"raw_affiliation_string":"Tencent Youtu Lab","institution_ids":["https://openalex.org/I2250653659"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.246,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":4,"citation_normalized_percentile":{"value":0.738958,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":"35","issue":"2","first_page":"1664","last_page":"1672"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9784,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9746,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/domain-adaptation","display_name":"Domain Adaptation","score":0.5010936},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.4872221},{"id":"https://openalex.org/keywords/kernel-density-estimation","display_name":"Kernel density estimation","score":0.44523603}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7444927},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6267069},{"id":"https://openalex.org/C19118579","wikidata":"https://www.wikidata.org/wiki/Q786423","display_name":"Frequency domain","level":2,"score":0.6090794},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.60329294},{"id":"https://openalex.org/C2776434776","wikidata":"https://www.wikidata.org/wiki/Q19246213","display_name":"Domain adaptation","level":3,"score":0.5010936},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.4872221},{"id":"https://openalex.org/C71134354","wikidata":"https://www.wikidata.org/wiki/Q458825","display_name":"Kernel density estimation","level":3,"score":0.44523603},{"id":"https://openalex.org/C2776459999","wikidata":"https://www.wikidata.org/wiki/Q2119376","display_name":"Fidelity","level":2,"score":0.44136494},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.4374353},{"id":"https://openalex.org/C49608258","wikidata":"https://www.wikidata.org/wiki/Q611705","display_name":"Bicubic interpolation","level":4,"score":0.41242015},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.41093796},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4004029},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.35746065},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13896844},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C171836373","wikidata":"https://www.wikidata.org/wiki/Q2266329","display_name":"Linear interpolation","level":3,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i2.16259","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16259/16066","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2012.10102","pdf_url":"https://arxiv.org/pdf/2012.10102","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i2.16259","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/16259/16066","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.56,"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W1613249581","https://openalex.org/W1885185971","https://openalex.org/W2083610878","https://openalex.org/W2097074225","https://openalex.org/W2242218935","https://openalex.org/W2331128040","https://openalex.org/W2534320940","https://openalex.org/W2593414223","https://openalex.org/W2607041014","https://openalex.org/W2607202125","https://openalex.org/W2747898905","https://openalex.org/W2866634454","https://openalex.org/W2883996939","https://openalex.org/W2891158090","https://openalex.org/W2915130236","https://openalex.org/W2919046835","https://openalex.org/W2947156405","https://openalex.org/W2947376905","https://openalex.org/W2962785568","https://openalex.org/W2962814024","https://openalex.org/W2963031226","https://openalex.org/W2963372104","https://openalex.org/W2963470893","https://openalex.org/W2963610452","https://openalex.org/W2963641969","https://openalex.org/W2963676087","https://openalex.org/W2963704386","https://openalex.org/W2963729050","https://openalex.org/W2963774720","https://openalex.org/W2963814095","https://openalex.org/W2964125708","https://openalex.org/W2964277374","https://openalex.org/W2971292464","https://openalex.org/W2982795046","https://openalex.org/W2983339877","https://openalex.org/W2986556279","https://openalex.org/W2991622177","https://openalex.org/W3011456574","https://openalex.org/W3034595214","https://openalex.org/W3034785019","https://openalex.org/W3035219913","https://openalex.org/W3170666462","https://openalex.org/W4288107876","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W4380449851","https://openalex.org/W4318832338","https://openalex.org/W3140377186","https://openalex.org/W3125091513","https://openalex.org/W3115246745","https://openalex.org/W2785996895","https://openalex.org/W2391781224","https://openalex.org/W2381850946","https://openalex.org/W2347570911","https://openalex.org/W2312819606"],"abstract_inverted_index":{"Recent":[0],"deep-learning":[1],"based":[2],"Super-Resolution":[3],"(SR)":[4],"methods":[5,17,94],"have":[6],"achieved":[7],"remarkable":[8],"performance":[9,160],"on":[10,55,133,137],"images":[11,27,46,50,105,132],"with":[12,171],"known":[13],"degradation.":[14,70],"However,":[15],"these":[16],"always":[18],"fail":[19],"in":[20],"real-world":[21,49,166,184],"scene,":[22],"since":[23],"the":[24,29,44,48,64,86,96,108,128,138,155,159,162],"Low-Resolution":[25],"(LR)":[26],"after":[28],"ideal":[30],"degradation":[31,101],"(e.g.,":[32],"bicubic":[33],"down-sampling)":[34],"deviate":[35],"from":[36,103],"real":[37,97],"source":[38],"domain.":[39],"The":[40],"domain":[41,88],"gap":[42,66],"between":[43],"LR":[45,110],"and":[47,106,174],"can":[51],"be":[52],"observed":[53],"clearly":[54],"frequency":[56,87,129],"density,":[57],"which":[58],"inspires":[59],"us":[60],"to":[61,95],"explicitly":[62],"narrow":[63],"undesired":[65],"caused":[67],"by":[68,126],"incorrect":[69],"From":[71],"this":[72],"point":[73],"of":[74,131,161],"view,":[75],"we":[76,120,142],"design":[77],"a":[78,179],"novel":[79,180],"Frequency":[80,122],"Consistent":[81],"Adaptation":[82],"(FCA)":[83],"that":[84,154],"ensures":[85],"consistency":[89],"when":[90],"applying":[91],"existing":[92],"SR":[93,149,163,185],"scene.":[98],"We":[99],"estimate":[100],"kernels":[102],"unsupervised":[104],"generate":[107],"corresponding":[109],"images.":[111],"To":[112],"provide":[113],"useful":[114],"gradient":[115],"information":[116],"for":[117,183],"kernel":[118],"estimation,":[119],"propose":[121],"Density":[123],"Comparator":[124],"(FDC)":[125],"distinguishing":[127],"density":[130],"different":[134],"scales.":[135],"Based":[136],"domain-consistent":[139],"LR-HR":[140],"pairs,":[141],"train":[143],"easy-implemented":[144],"Convolutional":[145],"Neural":[146],"Network":[147],"(CNN)":[148],"models.":[150],"Extensive":[151],"experiments":[152],"show":[153],"proposed":[156],"FCA":[157],"improves":[158],"model":[164],"under":[165],"setting":[167],"achieving":[168],"state-of-the-art":[169],"results":[170],"high":[172],"fidelity":[173],"plausible":[175],"perception,":[176],"thus":[177],"providing":[178],"effective":[181],"framework":[182],"application.":[186]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3174205678","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-03T09:13:22.240117","created_date":"2021-07-05"}