{"id":"https://openalex.org/W3110744880","doi":"https://doi.org/10.1609/aaai.v35i11.17195","title":"*-CFQ: Analyzing the Scalability of Machine Learning on a Compositional Task","display_name":"*-CFQ: Analyzing the Scalability of Machine Learning on a Compositional Task","publication_year":2021,"publication_date":"2021-05-18","ids":{"openalex":"https://openalex.org/W3110744880","doi":"https://doi.org/10.1609/aaai.v35i11.17195","mag":"3110744880"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i11.17195","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/17195/17002","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/17195/17002","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009412980","display_name":"Dmitry Tsarkov","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dmitry Tsarkov","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023415470","display_name":"Tibor Tihon","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tibor Tihon","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014724114","display_name":"Nathan Scales","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nathan Scales","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049028265","display_name":"Nikola Momchev","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nikola Momchev","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025950368","display_name":"Danila Sinopalnikov","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Danila Sinopalnikov","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5007588003","display_name":"Nathanael Sch\u00e4rli","orcid":null},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nathanael Sch\u00e4rli","raw_affiliation_strings":["Google"],"affiliations":[{"raw_affiliation_string":"Google","institution_ids":["https://openalex.org/I1291425158"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.322,"has_fulltext":false,"cited_by_count":13,"citation_normalized_percentile":{"value":0.999914,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":"35","issue":"11","first_page":"9949","last_page":"9957"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.48167977},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.46297592},{"id":"https://openalex.org/keywords/scope","display_name":"Scope (computer science)","score":0.43566495}],"concepts":[{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.72955453},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7265673},{"id":"https://openalex.org/C79581498","wikidata":"https://www.wikidata.org/wiki/Q1367530","display_name":"Suite","level":2,"score":0.72325623},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.64761126},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58937573},{"id":"https://openalex.org/C175291020","wikidata":"https://www.wikidata.org/wiki/Q1156822","display_name":"Offset (computer science)","level":2,"score":0.55725974},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.54154927},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.48246485},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.48167977},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.46661347},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.46297592},{"id":"https://openalex.org/C186644900","wikidata":"https://www.wikidata.org/wiki/Q194152","display_name":"Parsing","level":2,"score":0.44522235},{"id":"https://openalex.org/C2778012447","wikidata":"https://www.wikidata.org/wiki/Q1034415","display_name":"Scope (computer science)","level":2,"score":0.43566495},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.12467757},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.08963591},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C95457728","wikidata":"https://www.wikidata.org/wiki/Q309","display_name":"History","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i11.17195","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/17195/17002","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2012.08266","pdf_url":"http://arxiv.org/pdf/2012.08266","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v35i11.17195","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/17195/17002","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":58,"referenced_works":["https://openalex.org/W1703030490","https://openalex.org/W2064675550","https://openalex.org/W2118373646","https://openalex.org/W2124479173","https://openalex.org/W2132886902","https://openalex.org/W2133564696","https://openalex.org/W2157963512","https://openalex.org/W2175082661","https://openalex.org/W2626778328","https://openalex.org/W2756978580","https://openalex.org/W2760452458","https://openalex.org/W2775461895","https://openalex.org/W2805394970","https://openalex.org/W2805516822","https://openalex.org/W2866343820","https://openalex.org/W2896457183","https://openalex.org/W2939413764","https://openalex.org/W2946379889","https://openalex.org/W2949839959","https://openalex.org/W2951873305","https://openalex.org/W2953355233","https://openalex.org/W2956263095","https://openalex.org/W2962843773","https://openalex.org/W2963267799","https://openalex.org/W2963341956","https://openalex.org/W2963418779","https://openalex.org/W2964308564","https://openalex.org/W2965373594","https://openalex.org/W2969219365","https://openalex.org/W2970597249","https://openalex.org/W2971199637","https://openalex.org/W2977026452","https://openalex.org/W2977363726","https://openalex.org/W2979065840","https://openalex.org/W2981852735","https://openalex.org/W2996094825","https://openalex.org/W2996132992","https://openalex.org/W2996346899","https://openalex.org/W3001279689","https://openalex.org/W3004997297","https://openalex.org/W3016610080","https://openalex.org/W3022131108","https://openalex.org/W3030163527","https://openalex.org/W3034214887","https://openalex.org/W3034238904","https://openalex.org/W3039883906","https://openalex.org/W3043172396","https://openalex.org/W3104040280","https://openalex.org/W3204406378","https://openalex.org/W4253001367","https://openalex.org/W4288089799","https://openalex.org/W4288094673","https://openalex.org/W4292779060","https://openalex.org/W4297747548","https://openalex.org/W4297782088","https://openalex.org/W4297817411","https://openalex.org/W4301259831","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4312903001","https://openalex.org/W4287639816","https://openalex.org/W4226062056","https://openalex.org/W3114647881","https://openalex.org/W3092800243","https://openalex.org/W3084863322","https://openalex.org/W2994073215","https://openalex.org/W2093683727","https://openalex.org/W1485630101","https://openalex.org/W112744582"],"abstract_inverted_index":{"We":[0,63,100],"present":[1],"*-CFQ":[2],"(\"star-CFQ\"):":[3],"a":[4,31,41,69,109],"suite":[5],"of":[6,9,23,26,43,48,59,82],"large-scale":[7],"datasets":[8],"varying":[10],"scope":[11,81],"based":[12],"on":[13],"the":[14,24,46,80,113,125,128,132],"CFQ":[15],"semantic":[16],"parsing":[17],"benchmark,":[18],"designed":[19],"for":[20],"principled":[21],"investigation":[22],"scalability":[25],"machine":[27],"learning":[28],"systems":[29],"in":[30,115],"realistic":[32],"compositional":[33,66],"task":[34],"setting.":[35],"Using":[36],"this":[37,118],"suite,":[38],"we":[39,76],"conduct":[40],"series":[42],"experiments":[44],"investigating":[45],"ability":[47],"Transformers":[49],"to":[50,86,131],"benefit":[51],"from":[52,108,127],"increased":[53,97],"training":[54,73,98,106],"data":[55,107],"size":[56],"under":[57],"conditions":[58],"fixed":[60],"computational":[61],"cost.":[62],"show":[64,77,102],"that":[65,78,103],"generalization":[67],"remains":[68],"challenge":[70],"at":[71],"all":[72],"sizes,":[74],"and":[75,122],"increasing":[79],"natural":[83],"language":[84],"leads":[85],"consistently":[87],"higher":[88],"error":[89],"rates,":[90],"which":[91],"are":[92],"only":[93],"partially":[94],"offset":[95],"by":[96],"data.":[99],"further":[101],"while":[104],"additional":[105],"related":[110,129],"domain":[111,130,134],"improves":[112],"accuracy":[114],"data-starved":[116],"situations,":[117],"improvement":[119],"is":[120],"limited":[121],"diminishes":[123],"as":[124],"distance":[126],"target":[133],"increases.":[135]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3110744880","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":6}],"updated_date":"2025-01-02T07:42:19.884101","created_date":"2020-12-21"}