{"id":"https://openalex.org/W2997316506","doi":"https://doi.org/10.1609/aaai.v34i07.6633","title":"Global Context-Aware Progressive Aggregation Network for Salient Object Detection","display_name":"Global Context-Aware Progressive Aggregation Network for Salient Object Detection","publication_year":2020,"publication_date":"2020-04-03","ids":{"openalex":"https://openalex.org/W2997316506","doi":"https://doi.org/10.1609/aaai.v34i07.6633","mag":"2997316506"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i07.6633","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/6633/6487","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/6633/6487","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016136898","display_name":"Zuyao Chen","orcid":"https://orcid.org/0000-0002-7344-1101"},"institutions":[{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"funder","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zuyao Chen","raw_affiliation_strings":["University of Chinese Academy of Sciences"],"affiliations":[{"raw_affiliation_string":"University of Chinese Academy of Sciences","institution_ids":["https://openalex.org/I4210165038"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089092566","display_name":"Qianqian Xu","orcid":"https://orcid.org/0000-0002-3512-7277"},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qianqian Xu","raw_affiliation_strings":["Chinese Academy of Sciences"],"affiliations":[{"raw_affiliation_string":"Chinese Academy of Sciences","institution_ids":["https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091558139","display_name":"Runmin Cong","orcid":"https://orcid.org/0000-0003-0972-4008"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"funder","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Runmin Cong","raw_affiliation_strings":["Beijing Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Beijing Jiaotong University","institution_ids":["https://openalex.org/I21193070"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028597017","display_name":"Qingming Huang","orcid":"https://orcid.org/0000-0001-7542-296X"},"institutions":[{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"funder","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qingming Huang","raw_affiliation_strings":["University of Chinese Academy of Sciences"],"affiliations":[{"raw_affiliation_string":"University of Chinese Academy of Sciences","institution_ids":["https://openalex.org/I4210165038"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":18.808,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":383,"citation_normalized_percentile":{"value":0.999867,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"34","issue":"07","first_page":"10599","last_page":"10606"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11094","display_name":"Face Recognition and Perception","score":0.9009,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6032594},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.56847054}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8067523},{"id":"https://openalex.org/C152124472","wikidata":"https://www.wikidata.org/wiki/Q1204361","display_name":"Redundancy (engineering)","level":2,"score":0.70757246},{"id":"https://openalex.org/C2780719617","wikidata":"https://www.wikidata.org/wiki/Q1030752","display_name":"Salient","level":2,"score":0.62501955},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6032594},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.58055454},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57914615},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.56847054},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5257726},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.5170379},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46362448},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4114882},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37129313},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32654822},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i07.6633","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/6633/6487","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2003.00651","pdf_url":"https://arxiv.org/pdf/2003.00651","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i07.6633","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/6633/6487","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1854404533","https://openalex.org/W1894057436","https://openalex.org/W1901129140","https://openalex.org/W1942214758","https://openalex.org/W2002781701","https://openalex.org/W2031489346","https://openalex.org/W2039313011","https://openalex.org/W2086791339","https://openalex.org/W2086866337","https://openalex.org/W2108598243","https://openalex.org/W2121378474","https://openalex.org/W2171378720","https://openalex.org/W2194775991","https://openalex.org/W2293332611","https://openalex.org/W2519528544","https://openalex.org/W2569272946","https://openalex.org/W2740667773","https://openalex.org/W2744613561","https://openalex.org/W2767623212","https://openalex.org/W2788154928","https://openalex.org/W2793668851","https://openalex.org/W2798791651","https://openalex.org/W2798825526","https://openalex.org/W2799074129","https://openalex.org/W2807746031","https://openalex.org/W2884555738","https://openalex.org/W2895251968","https://openalex.org/W2939217524","https://openalex.org/W2943125866","https://openalex.org/W2961348656","https://openalex.org/W2963032190","https://openalex.org/W2963112696","https://openalex.org/W2963572583","https://openalex.org/W2963685207","https://openalex.org/W2963868681","https://openalex.org/W4308909683"],"related_works":["https://openalex.org/W4321353415","https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3029198973","https://openalex.org/W2378211422","https://openalex.org/W2329500892","https://openalex.org/W2288837750"],"abstract_inverted_index":{"Deep":[0],"convolutional":[1],"neural":[2],"networks":[3],"have":[4],"achieved":[5],"competitive":[6],"performance":[7],"in":[8,12,97],"salient":[9,168],"object":[10],"detection,":[11],"which":[13,160],"how":[14],"to":[15,70,109,134,151,162],"learn":[16,163],"effective":[17],"and":[18,79,92,113,123,126,137,170,195],"comprehensive":[19],"features":[20,51,82,118],"plays":[21],"a":[22,46,65,98,102],"critical":[23],"role.":[24],"Most":[25],"of":[26,49,175],"the":[27,37,56,94,115,121,127,139,145,153,164,172,186,190],"previous":[28],"works":[29],"mainly":[30],"adopted":[31],"multiple-level":[32],"feature":[33],"integration":[34],"yet":[35],"ignored":[36],"gap":[38],"between":[39],"different":[40,158,167],"features.":[41,141,177],"Besides,":[42],"there":[43],"also":[44],"exists":[45],"dilution":[47,173],"process":[48],"high-level":[50,76,176],"as":[52],"they":[53],"passed":[54],"on":[55,180],"top-down":[57],"pathway.":[58],"To":[59],"remedy":[60],"these":[61],"issues,":[62],"we":[63,143],"propose":[64],"novel":[66],"network":[67],"named":[68],"GCPANet":[69],"effectively":[71],"integrate":[72],"low-level":[73],"appearance":[74],"features,":[75,78],"semantic":[77],"global":[80,154],"context":[81,155],"through":[83],"some":[84],"progressive":[85],"context-aware":[86],"Feature":[87],"Interweaved":[88],"Aggregation":[89],"(FIA)":[90],"modules":[91],"generate":[93,152],"saliency":[95],"map":[96],"supervised":[99],"way.":[100],"Moreover,":[101],"Head":[103],"Attention":[104],"(HA)":[105],"module":[106,131,150],"is":[107,132],"used":[108],"reduce":[110],"information":[111,156],"redundancy":[112],"enhance":[114],"top":[116],"layers":[117],"by":[119],"leveraging":[120],"spatial":[122],"channel-wise":[124],"attention,":[125],"Self":[128],"Refinement":[129],"(SR)":[130],"utilized":[133],"further":[135],"refine":[136],"heighten":[138],"input":[140],"Furthermore,":[142],"design":[144],"Global":[146],"Context":[147],"Flow":[148],"(GCF)":[149],"at":[157],"stages,":[159],"aims":[161],"relationship":[165],"among":[166],"regions":[169],"alleviate":[171],"effect":[174],"Experimental":[178],"results":[179],"six":[181],"benchmark":[182],"datasets":[183],"demonstrate":[184],"that":[185],"proposed":[187],"approach":[188],"outperforms":[189],"state-of-the-art":[191],"methods":[192],"both":[193],"quantitatively":[194],"qualitatively.":[196]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2997316506","counts_by_year":[{"year":2025,"cited_by_count":14},{"year":2024,"cited_by_count":65},{"year":2023,"cited_by_count":104},{"year":2022,"cited_by_count":116},{"year":2021,"cited_by_count":64},{"year":2020,"cited_by_count":19}],"updated_date":"2025-04-03T09:17:21.860542","created_date":"2020-01-10"}