{"id":"https://openalex.org/W2998486497","doi":"https://doi.org/10.1609/aaai.v34i05.6435","title":"Multi-Label Patent Categorization with Non-Local Attention-Based Graph Convolutional Network","display_name":"Multi-Label Patent Categorization with Non-Local Attention-Based Graph Convolutional Network","publication_year":2020,"publication_date":"2020-04-03","ids":{"openalex":"https://openalex.org/W2998486497","doi":"https://doi.org/10.1609/aaai.v34i05.6435","mag":"2998486497"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i05.6435","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/6435/6291","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/6435/6291","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045657954","display_name":"Pingjie Tang","orcid":null},"institutions":[{"id":"https://openalex.org/I107639228","display_name":"University of Notre Dame","ror":"https://ror.org/00mkhxb43","country_code":"US","type":"funder","lineage":["https://openalex.org/I107639228"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Pingjie Tang","raw_affiliation_strings":["University of Notre Dame"],"affiliations":[{"raw_affiliation_string":"University of Notre Dame","institution_ids":["https://openalex.org/I107639228"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074821819","display_name":"Meng Jiang","orcid":"https://orcid.org/0000-0002-3009-519X"},"institutions":[{"id":"https://openalex.org/I107639228","display_name":"University of Notre Dame","ror":"https://ror.org/00mkhxb43","country_code":"US","type":"funder","lineage":["https://openalex.org/I107639228"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Meng Jiang","raw_affiliation_strings":["University of Notre Dame"],"affiliations":[{"raw_affiliation_string":"University of Notre Dame","institution_ids":["https://openalex.org/I107639228"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072963651","display_name":"Bryan Xia","orcid":null},"institutions":[{"id":"https://openalex.org/I107639228","display_name":"University of Notre Dame","ror":"https://ror.org/00mkhxb43","country_code":"US","type":"funder","lineage":["https://openalex.org/I107639228"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bryan (Ning) Xia","raw_affiliation_strings":["University of Notre Dame"],"affiliations":[{"raw_affiliation_string":"University of Notre Dame","institution_ids":["https://openalex.org/I107639228"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027317556","display_name":"Jed W. Pitera","orcid":null},"institutions":[{"id":"https://openalex.org/I4210085935","display_name":"IBM Research - Almaden","ror":"https://ror.org/005w8dd04","country_code":"US","type":"facility","lineage":["https://openalex.org/I1341412227","https://openalex.org/I4210085935","https://openalex.org/I4210114115"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jed W. Pitera","raw_affiliation_strings":["IBM Research - Almaden"],"affiliations":[{"raw_affiliation_string":"IBM Research - Almaden","institution_ids":["https://openalex.org/I4210085935"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053124209","display_name":"J.J. Welser","orcid":null},"institutions":[{"id":"https://openalex.org/I4210085935","display_name":"IBM Research - Almaden","ror":"https://ror.org/005w8dd04","country_code":"US","type":"facility","lineage":["https://openalex.org/I1341412227","https://openalex.org/I4210085935","https://openalex.org/I4210114115"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jeffrey Welser","raw_affiliation_strings":["IBM Research - Almaden"],"affiliations":[{"raw_affiliation_string":"IBM Research - Almaden","institution_ids":["https://openalex.org/I4210085935"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5068157871","display_name":"Nitesh V. Chawla","orcid":"https://orcid.org/0000-0003-3932-5956"},"institutions":[{"id":"https://openalex.org/I107639228","display_name":"University of Notre Dame","ror":"https://ror.org/00mkhxb43","country_code":"US","type":"funder","lineage":["https://openalex.org/I107639228"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nitesh V. Chawla","raw_affiliation_strings":["University of Notre Dame"],"affiliations":[{"raw_affiliation_string":"University of Notre Dame","institution_ids":["https://openalex.org/I107639228"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.336,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":40,"citation_normalized_percentile":{"value":0.859501,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"34","issue":"05","first_page":"9024","last_page":"9031"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9711,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9711,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10856","display_name":"Intellectual Property and Patents","score":0.9427,"subfield":{"id":"https://openalex.org/subfields/1405","display_name":"Management of Technology and Innovation"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.59778833},{"id":"https://openalex.org/keywords/multi-label-classification","display_name":"Multi-label classification","score":0.50328225}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8168207},{"id":"https://openalex.org/C94124525","wikidata":"https://www.wikidata.org/wiki/Q912550","display_name":"Categorization","level":2,"score":0.6142806},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.59778833},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.53458095},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5303852},{"id":"https://openalex.org/C2776482837","wikidata":"https://www.wikidata.org/wiki/Q3553958","display_name":"Multi-label classification","level":2,"score":0.50328225},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.50142145},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.45359015},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.44548336},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.36457208},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35809502},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.14691323},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i05.6435","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/6435/6291","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i05.6435","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/6435/6291","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.49,"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1832693441","https://openalex.org/W2129026672","https://openalex.org/W2145658888","https://openalex.org/W2183087644","https://openalex.org/W2250662230","https://openalex.org/W2461743311","https://openalex.org/W2593560537","https://openalex.org/W2601789736","https://openalex.org/W2604675517","https://openalex.org/W2607041163","https://openalex.org/W2739996966","https://openalex.org/W2751120573","https://openalex.org/W2766224948","https://openalex.org/W2899313146","https://openalex.org/W2899771611","https://openalex.org/W2950801772","https://openalex.org/W2962946486","https://openalex.org/W2963703197","https://openalex.org/W2963912736","https://openalex.org/W2964015378","https://openalex.org/W2987151592","https://openalex.org/W3194416009","https://openalex.org/W4285723986","https://openalex.org/W4294558607","https://openalex.org/W4385245566","https://openalex.org/W95416943"],"related_works":["https://openalex.org/W4311804456","https://openalex.org/W2735662278","https://openalex.org/W2623658258","https://openalex.org/W2382615723","https://openalex.org/W2370459448","https://openalex.org/W2165912799","https://openalex.org/W2143413548","https://openalex.org/W2105067402","https://openalex.org/W1987484445","https://openalex.org/W1969219540"],"abstract_inverted_index":{"Patent":[0,8],"categorization,":[1],"which":[2],"is":[3,44,55],"to":[4,12,40,45,56,87,100],"assign":[5],"multiple":[6],"International":[7],"Classification":[9],"(IPC)":[10],"codes":[11],"a":[13,30,69,96,115,148],"patent":[14,118],"document,":[15],"relies":[16],"heavily":[17],"on":[18,74,155],"expert":[19],"efforts,":[20],"as":[21,29,128,130],"it":[22,36],"requires":[23],"substantial":[24],"domain":[25],"knowledge.":[26],"When":[27],"formulated":[28],"multi-label":[31,112],"text":[32,51],"classification":[33],"(MTC)":[34],"problem,":[35],"draws":[37],"two":[38],"challenges":[39],"existing":[41],"models:":[42],"one":[43],"learn":[46,101],"effective":[47],"document":[48,109],"representations":[49,103,110],"from":[50],"content;":[52],"the":[53,58,81,105,122,145],"other":[54],"model":[57,72,126,138],"cross-section":[59],"behavior":[60],"of":[61,92,108,124,144],"label":[62,70,102],"set.":[63],"In":[64],"this":[65],"work,":[66],"we":[67,120],"propose":[68],"attention":[71,98],"based":[73],"graph":[75],"convolutional":[76],"network.":[77],"It":[78,94],"jointly":[79],"learns":[80],"document-word":[82],"associations":[83],"and":[84,127,151,157],"word-word":[85],"co-occurrences":[86],"generate":[88],"rich":[89],"semantic":[90],"embeddings":[91],"documents.":[93],"employs":[95],"non-local":[97],"mechanism":[99],"in":[104],"same":[106],"space":[107],"for":[111],"classification.":[113],"On":[114],"large":[116,149],"CIRCA":[117],"database,":[119],"evaluate":[121],"performance":[123,154],"our":[125,137],"many":[129],"seven":[131],"competitive":[132],"baselines.":[133],"We":[134],"find":[135],"that":[136],"outperforms":[139],"all":[140],"those":[141],"prior":[142],"state":[143],"art":[146],"by":[147],"margin":[150],"achieves":[152],"high":[153],"P@k":[156],"nDCG@k.":[158]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2998486497","counts_by_year":[{"year":2024,"cited_by_count":9},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":12},{"year":2020,"cited_by_count":2}],"updated_date":"2025-04-22T14:58:46.621548","created_date":"2020-01-10"}