{"id":"https://openalex.org/W2997033417","doi":"https://doi.org/10.1609/aaai.v34i04.5817","title":"Robust Gradient-Based Markov Subsampling","display_name":"Robust Gradient-Based Markov Subsampling","publication_year":2020,"publication_date":"2020-04-03","ids":{"openalex":"https://openalex.org/W2997033417","doi":"https://doi.org/10.1609/aaai.v34i04.5817","mag":"2997033417"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i04.5817","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/5817/5673","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/5817/5673","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030762002","display_name":"Tieliang Gong","orcid":"https://orcid.org/0000-0002-3840-441X"},"institutions":[{"id":"https://openalex.org/I153718931","display_name":"University of Ottawa","ror":"https://ror.org/03c4mmv16","country_code":"CA","type":"funder","lineage":["https://openalex.org/I153718931"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Tieliang Gong","raw_affiliation_strings":["University of Ottawa"],"affiliations":[{"raw_affiliation_string":"University of Ottawa","institution_ids":["https://openalex.org/I153718931"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000347584","display_name":"Quanhan Xi","orcid":null},"institutions":[{"id":"https://openalex.org/I153718931","display_name":"University of Ottawa","ror":"https://ror.org/03c4mmv16","country_code":"CA","type":"funder","lineage":["https://openalex.org/I153718931"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Quanhan Xi","raw_affiliation_strings":["University of Ottawa"],"affiliations":[{"raw_affiliation_string":"University of Ottawa","institution_ids":["https://openalex.org/I153718931"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100647362","display_name":"Chen Xu","orcid":"https://orcid.org/0000-0003-4397-4465"},"institutions":[{"id":"https://openalex.org/I153718931","display_name":"University of Ottawa","ror":"https://ror.org/03c4mmv16","country_code":"CA","type":"funder","lineage":["https://openalex.org/I153718931"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Chen Xu","raw_affiliation_strings":["University of Ottawa"],"affiliations":[{"raw_affiliation_string":"University of Ottawa","institution_ids":["https://openalex.org/I153718931"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.155,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.625796,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":73},"biblio":{"volume":"34","issue":"04","first_page":"4004","last_page":"4011"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.995,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.995,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9893,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C149728462","wikidata":"https://www.wikidata.org/wiki/Q751319","display_name":"Minimax","level":2,"score":0.7872391},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.7169497},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61402565},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.56130594},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.5360079},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.49863148},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.47496316},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.38025182},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.35439882},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3099129},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.29833466},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.21187305},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i04.5817","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/5817/5673","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i04.5817","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/5817/5673","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1995772505","https://openalex.org/W1998269045","https://openalex.org/W2007399394","https://openalex.org/W2064942524","https://openalex.org/W2095763317","https://openalex.org/W2112746714","https://openalex.org/W2116780995","https://openalex.org/W2117756735","https://openalex.org/W2129566246","https://openalex.org/W2189465200","https://openalex.org/W2622480976","https://openalex.org/W2751622739","https://openalex.org/W2785424877","https://openalex.org/W2787248994","https://openalex.org/W2952608003","https://openalex.org/W2963431501","https://openalex.org/W2963693254","https://openalex.org/W3098488568","https://openalex.org/W4289147927","https://openalex.org/W4295830359","https://openalex.org/W4301248114"],"related_works":["https://openalex.org/W2895916002","https://openalex.org/W2474724840","https://openalex.org/W2369683208","https://openalex.org/W2362133437","https://openalex.org/W2084836983","https://openalex.org/W2069885834","https://openalex.org/W2016058626","https://openalex.org/W1977348009","https://openalex.org/W1814049089","https://openalex.org/W1530911128"],"abstract_inverted_index":{"Subsampling":[0],"is":[1,78,112,133,152],"a":[2,56,65,81,89,105,109,120,137],"widely":[3],"used":[4],"and":[5,118,157],"effective":[6],"method":[7],"to":[8,55,71,79,86,114],"deal":[9],"with":[10,30,101],"the":[11,24,41,94,124,130,141,144],"challenges":[12],"brought":[13],"by":[14,154],"big":[15],"data.":[16],"Most":[17],"subsampling":[18,68],"procedures":[19],"are":[20,34],"designed":[21],"based":[22],"on":[23],"importance":[25,32],"sampling":[26,37],"framework,":[27],"where":[28],"samples":[29,46,100,117],"high":[31],"measures":[33],"given":[35],"corresponding":[36],"probabilities.":[38],"However,":[39],"in":[40,143],"highly":[42],"noisy":[43,116],"case,":[44],"these":[45],"may":[47],"cause":[48],"an":[49],"unstable":[50],"estimator":[51,132],"which":[52,83,139],"could":[53],"lead":[54],"misleading":[57],"result.":[58],"To":[59],"tackle":[60],"this":[61],"issue,":[62],"we":[63],"propose":[64],"gradient-based":[66],"Markov":[67],"(GMS)":[69],"algorithm":[70],"achieve":[72],"robust":[73],"estimation.":[74],"The":[75,147],"core":[76],"idea":[77],"construct":[80],"subset":[82,110],"allows":[84],"us":[85],"conservatively":[87],"correct":[88],"crude":[90],"initial":[91,125],"estimate":[92],"towards":[93],"true":[95],"signal.":[96],"Specifically,":[97],"GMS":[98,131,151],"selects":[99],"small":[102],"gradients":[103],"via":[104],"probabilistic":[106],"procedure,":[107],"constructing":[108],"that":[111,129],"likely":[113],"exclude":[115],"provide":[119],"safe":[121],"improvement":[122],"over":[123],"estimate.":[126],"We":[127],"show":[128],"statistically":[134],"consistent":[135],"at":[136],"rate":[138],"matches":[140],"optimal":[142],"minimax":[145],"sense.":[146],"promising":[148],"performance":[149],"of":[150],"supported":[153],"simulation":[155],"studies":[156],"real":[158],"data":[159],"examples.":[160]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2997033417","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2025-04-21T13:23:53.297406","created_date":"2020-01-10"}