{"id":"https://openalex.org/W2996835428","doi":"https://doi.org/10.1609/aaai.v34i03.5652","title":"Learning Graph Convolutional Network for Skeleton-Based Human Action Recognition by Neural Searching","display_name":"Learning Graph Convolutional Network for Skeleton-Based Human Action Recognition by Neural Searching","publication_year":2020,"publication_date":"2020-04-03","ids":{"openalex":"https://openalex.org/W2996835428","doi":"https://doi.org/10.1609/aaai.v34i03.5652","mag":"2996835428"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i03.5652","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/5652/5508","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/5652/5508","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019479187","display_name":"Wei Peng","orcid":"https://orcid.org/0000-0002-2892-5764"},"institutions":[{"id":"https://openalex.org/I98381234","display_name":"University of Oulu","ror":"https://ror.org/03yj89h83","country_code":"FI","type":"funder","lineage":["https://openalex.org/I98381234"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Wei Peng","raw_affiliation_strings":["University of Oulu"],"affiliations":[{"raw_affiliation_string":"University of Oulu","institution_ids":["https://openalex.org/I98381234"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026880795","display_name":"Xiaopeng Hong","orcid":"https://orcid.org/0000-0002-0611-0636"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaopeng Hong","raw_affiliation_strings":["Xi'an Jiaotong University"],"affiliations":[{"raw_affiliation_string":"Xi'an Jiaotong University","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100763975","display_name":"Haoyu Chen","orcid":"https://orcid.org/0000-0003-3267-2664"},"institutions":[{"id":"https://openalex.org/I98381234","display_name":"University of Oulu","ror":"https://ror.org/03yj89h83","country_code":"FI","type":"funder","lineage":["https://openalex.org/I98381234"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Haoyu Chen","raw_affiliation_strings":["University of Oulu"],"affiliations":[{"raw_affiliation_string":"University of Oulu","institution_ids":["https://openalex.org/I98381234"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082301986","display_name":"Guoying Zhao","orcid":"https://orcid.org/0000-0003-3694-206X"},"institutions":[{"id":"https://openalex.org/I98381234","display_name":"University of Oulu","ror":"https://ror.org/03yj89h83","country_code":"FI","type":"funder","lineage":["https://openalex.org/I98381234"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Guoying Zhao","raw_affiliation_strings":["University of Oulu"],"affiliations":[{"raw_affiliation_string":"University of Oulu","institution_ids":["https://openalex.org/I98381234"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":16.505,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":322,"citation_normalized_percentile":{"value":0.999865,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"34","issue":"03","first_page":"2669","last_page":"2676"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9686,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10510","display_name":"Stroke Rehabilitation and Recovery","score":0.9432,"subfield":{"id":"https://openalex.org/subfields/2742","display_name":"Rehabilitation"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/action-recognition","display_name":"Action Recognition","score":0.50618714}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7435732},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5788304},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.52841127},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.51392126},{"id":"https://openalex.org/C2987834672","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Action recognition","level":3,"score":0.50618714},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.482988},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37753147},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35735506},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i03.5652","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/5652/5508","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://urn.fi/urn:nbn:fi-fe202104099803","pdf_url":"https://oulurepo.oulu.fi/bitstream/10024/31693/1/nbnfi-fe202104099803.pdf","source":{"id":"https://openalex.org/S4306400284","display_name":"University of Oulu Repository (University of Oulu)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I98381234","host_organization_name":"University of Oulu","host_organization_lineage":["https://openalex.org/I98381234"],"host_organization_lineage_names":["University of Oulu"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1911.04131","pdf_url":"https://arxiv.org/pdf/1911.04131","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v34i03.5652","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/5652/5508","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1540706608","https://openalex.org/W1581066146","https://openalex.org/W1926645898","https://openalex.org/W2138784882","https://openalex.org/W2158787690","https://openalex.org/W2418011751","https://openalex.org/W2553303224","https://openalex.org/W2558460151","https://openalex.org/W2559085405","https://openalex.org/W2593146028","https://openalex.org/W2603861860","https://openalex.org/W2613570903","https://openalex.org/W2619947201","https://openalex.org/W2798644314","https://openalex.org/W2802979841","https://openalex.org/W2894662639","https://openalex.org/W2899771611","https://openalex.org/W2940457086","https://openalex.org/W2948058585","https://openalex.org/W2950568498","https://openalex.org/W2951104886","https://openalex.org/W2963076818","https://openalex.org/W2963136578","https://openalex.org/W2964015378","https://openalex.org/W2964081807","https://openalex.org/W2964097678","https://openalex.org/W2964134613","https://openalex.org/W2964321699","https://openalex.org/W2965658867","https://openalex.org/W2981341885","https://openalex.org/W4230005465","https://openalex.org/W4297733535","https://openalex.org/W4300687381","https://openalex.org/W4324106947","https://openalex.org/W4385245566","https://openalex.org/W4394669517"],"related_works":["https://openalex.org/W4386598245","https://openalex.org/W4321487865","https://openalex.org/W4313906399","https://openalex.org/W4312417841","https://openalex.org/W4293226380","https://openalex.org/W4287181611","https://openalex.org/W4239306820","https://openalex.org/W2947043951","https://openalex.org/W2811106690","https://openalex.org/W2318112981"],"abstract_inverted_index":{"Human":[0],"action":[1,189],"recognition":[2,190],"from":[3],"skeleton":[4],"data,":[5,20],"fuelled":[6],"by":[7,60,137],"the":[8,39,50,54,96,107,131,159,162,166,173,176,199],"Graph":[9],"Convolutional":[10],"Network":[11],"(GCN)":[12],"with":[13,117],"its":[14],"powerful":[15],"capability":[16],"of":[17,24,72,133,161,175,204],"modeling":[18],"non-Euclidean":[19],"has":[21],"attracted":[22],"lots":[23],"attention.":[25],"However,":[26],"many":[27],"existing":[28],"GCNs":[29],"provide":[30],"a":[31,79,114,141],"pre-defined":[32],"graph":[33,120,169],"structure":[34],"and":[35,94,112,127,144,165],"share":[36],"it":[37],"through":[38],"entire":[40],"network,":[41],"which":[42],"can":[43],"loss":[44],"implicit":[45],"joint":[46],"correlations":[47,109],"especially":[48],"for":[49,101],"higher-level":[51],"features.":[52],"Besides,":[53,122],"mainstream":[55],"spectral":[56],"GCN":[57,81,100],"is":[58,148],"approximated":[59],"one-order":[61,138],"hop":[62],"such":[63],"that":[64,195],"higher-order":[65,163],"connections":[66],"are":[67],"not":[68],"well":[69],"involved.":[70],"All":[71],"these":[73,85],"require":[74],"huge":[75],"efforts":[76],"to":[77,89,129,150],"design":[78],"better":[80],"architecture.":[82],"To":[83,171],"address":[84],"problems,":[86],"we":[87,105,123,179],"turn":[88],"Neural":[90],"Architecture":[91],"Search":[92],"(NAS)":[93],"propose":[95],"first":[97],"automatically":[98],"designed":[99],"this":[102,153],"task.":[103],"Specifically,":[104],"explore":[106],"spatial-temporal":[108],"between":[110],"nodes":[111],"build":[113],"search":[115,151],"space":[116],"multiple":[118],"dynamic":[119,168],"modules.":[121,170],"introduce":[124],"multiple-hop":[125],"modules":[126],"expect":[128],"break":[130],"limitation":[132],"representational":[134],"capacity":[135],"caused":[136],"approximation.":[139],"Moreover,":[140],"corresponding":[142],"sampling-":[143],"memory-efficient":[145],"evolution":[146],"strategy":[147],"proposed":[149],"in":[152,202],"space.":[154],"The":[155,192],"resulted":[156],"architecture":[157],"proves":[158],"effectiveness":[160],"approximation":[164],"layer-wise":[167],"evaluate":[172],"performance":[174],"searched":[177],"model,":[178],"conduct":[180],"extensive":[181],"experiments":[182],"on":[183],"two":[184],"very":[185],"large":[186],"scale":[187],"skeleton-based":[188],"datasets.":[191],"results":[193,201],"show":[194],"our":[196],"model":[197],"gets":[198],"state-of-the-art":[200],"term":[203],"given":[205],"metrics.":[206]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2996835428","counts_by_year":[{"year":2025,"cited_by_count":7},{"year":2024,"cited_by_count":48},{"year":2023,"cited_by_count":75},{"year":2022,"cited_by_count":72},{"year":2021,"cited_by_count":81},{"year":2020,"cited_by_count":37}],"updated_date":"2025-04-26T16:59:20.896355","created_date":"2020-01-10"}