{"id":"https://openalex.org/W2963744614","doi":"https://doi.org/10.1609/aaai.v33i01.3301938","title":"Exploiting Sentence Embedding for Medical Question Answering","display_name":"Exploiting Sentence Embedding for Medical Question Answering","publication_year":2019,"publication_date":"2019-07-17","ids":{"openalex":"https://openalex.org/W2963744614","doi":"https://doi.org/10.1609/aaai.v33i01.3301938","mag":"2963744614"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.3301938","pdf_url":"https://aaai.org/ojs/index.php/AAAI/article/download/3883/3761","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://aaai.org/ojs/index.php/AAAI/article/download/3883/3761","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5111512416","display_name":"Yu Hao","orcid":null},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yu Hao","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100674776","display_name":"Xien Liu","orcid":"https://orcid.org/0000-0002-4947-0631"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xien Liu","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014958566","display_name":"Ji Wu","orcid":"https://orcid.org/0000-0001-6170-726X"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ji Wu","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100828802","display_name":"Ping Lv","orcid":"https://orcid.org/0000-0001-6095-3397"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ping Lv","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.122,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":21,"citation_normalized_percentile":{"value":0.887464,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":"33","issue":"01","first_page":"938","last_page":"945"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9617,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9511,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/word-embedding","display_name":"Word embedding","score":0.5862645},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.42570457}],"concepts":[{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.8212304},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.7675988},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70222265},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.65374887},{"id":"https://openalex.org/C2777462759","wikidata":"https://www.wikidata.org/wiki/Q18395344","display_name":"Word embedding","level":3,"score":0.5862645},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57998806},{"id":"https://openalex.org/C44291984","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Question answering","level":2,"score":0.5554517},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.47150627},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.42570457},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.4256162},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.42017925},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.4146324},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.14580587},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.1343126},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.3301938","pdf_url":"https://aaai.org/ojs/index.php/AAAI/article/download/3883/3761","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1811.06156","pdf_url":"https://arxiv.org/pdf/1811.06156","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.3301938","pdf_url":"https://aaai.org/ojs/index.php/AAAI/article/download/3883/3761","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.57}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1614298861","https://openalex.org/W1647671624","https://openalex.org/W2131744502","https://openalex.org/W2133585753","https://openalex.org/W2140679639","https://openalex.org/W2250539671","https://openalex.org/W2267186426","https://openalex.org/W2271840356","https://openalex.org/W2517782820","https://openalex.org/W2551396370","https://openalex.org/W2740747242","https://openalex.org/W2788363870","https://openalex.org/W2798819017","https://openalex.org/W2799124508","https://openalex.org/W2962985038","https://openalex.org/W2963344337","https://openalex.org/W2963748441","https://openalex.org/W2963804993","https://openalex.org/W2963898730","https://openalex.org/W3122775348","https://openalex.org/W4294170691","https://openalex.org/W4300687121","https://openalex.org/W4394665226"],"related_works":["https://openalex.org/W4386414439","https://openalex.org/W3214579985","https://openalex.org/W3180274546","https://openalex.org/W3134737443","https://openalex.org/W3083244731","https://openalex.org/W2963744614","https://openalex.org/W2949267551","https://openalex.org/W2901844560","https://openalex.org/W20999564","https://openalex.org/W2081764088"],"abstract_inverted_index":{"Despite":[0],"the":[1,27,176,180,193],"great":[2],"success":[3],"of":[4,36,116,167,196],"word":[5],"embedding,":[6,191],"sentence":[7,24,42,64,103,190],"embedding":[8,25,43,67],"remains":[9],"a":[10,18,41,48,63,105,110,114,165],"not-well-solved":[11],"problem.":[12],"In":[13],"this":[14],"paper,":[15],"we":[16],"present":[17],"supervised":[19],"learning":[20,33],"framework":[21,34,122,155],"to":[22,61,160,173,202],"exploit":[23],"for":[26,187,205],"medical":[28,106,137,145],"question":[29,107,206],"answering":[30,207],"task.":[31],"The":[32,51,80,120,148],"consists":[35],"two":[37,83,126,194],"main":[38],"parts:":[39],"1)":[40],"producing":[44,188],"module,":[45],"and":[46,58,90,113,139,179,192],"2)":[47],"scoring":[49,84,197],"module.":[50],"former":[52],"is":[53,71,123],"developed":[54],"with":[55,109],"contextual":[56,181],"self-attention":[57,182],"multi-scale":[59,177],"techniques":[60],"encode":[62],"into":[65],"an":[66],"tensor.":[68],"This":[69],"module":[70],"shortly":[72],"called":[73],"Contextual":[74],"self-Attention":[75],"Multi-scale":[76],"Sentence":[77],"Embedding":[78],"(CAMSE).":[79],"latter":[81],"employs":[82],"strategies:":[85],"Semantic":[86,91],"Matching":[87],"Scoring":[88,93],"(SMS)":[89],"Association":[92],"(SAS).":[94],"SMS":[95],"measures":[96],"similarity":[97],"while":[98],"SAS":[99],"captures":[100],"association":[101],"between":[102],"pairs:":[104],"concatenated":[108],"candidate":[111],"choice,":[112],"piece":[115],"corresponding":[117],"supportive":[118],"evidence.":[119],"proposed":[121,154],"examined":[124],"by":[125],"Medical":[127],"Question":[128],"Answering(MedicalQA)":[129],"datasets":[130],"which":[131],"are":[132,170,199],"collected":[133],"from":[134],"real-world":[135],"applications:":[136],"exam":[138],"clinical":[140],"diagnosis":[141],"based":[142],"on":[143],"electronic":[144],"records":[146],"(EMR).":[147],"comparison":[149],"results":[150],"show":[151],"that":[152,175],"our":[153],"achieved":[156],"significant":[157],"improvements":[158],"compared":[159],"competitive":[161],"baseline":[162],"approaches.":[163],"Additionally,":[164],"series":[166],"controlled":[168],"experiments":[169],"also":[171],"conducted":[172],"illustrate":[174],"strategy":[178],"layer":[183],"play":[184],"important":[185],"roles":[186],"effective":[189],"kinds":[195],"strategies":[198],"highly":[200],"complementary":[201],"each":[203],"other":[204],"problems.":[208]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963744614","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":4}],"updated_date":"2025-04-15T23:35:26.981146","created_date":"2019-07-30"}