{"id":"https://openalex.org/W2966234499","doi":"https://doi.org/10.1609/aaai.v33i01.33014683","title":"Compressing Recurrent Neural Networks with Tensor Ring for Action Recognition","display_name":"Compressing Recurrent Neural Networks with Tensor Ring for Action Recognition","publication_year":2019,"publication_date":"2019-07-17","ids":{"openalex":"https://openalex.org/W2966234499","doi":"https://doi.org/10.1609/aaai.v33i01.33014683","mag":"2966234499"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.33014683","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/4393/4271","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/4393/4271","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101459185","display_name":"Yu Pan","orcid":"https://orcid.org/0000-0001-7515-8492"},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yu Pan","raw_affiliation_strings":["University of Electronic Science and Technology of China"],"affiliations":[{"raw_affiliation_string":"University of Electronic Science and Technology of China","institution_ids":["https://openalex.org/I150229711"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100380900","display_name":"Jing Xu","orcid":"https://orcid.org/0000-0002-4565-7204"},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Xu","raw_affiliation_strings":["University of Electronic Science and Technology of China"],"affiliations":[{"raw_affiliation_string":"University of Electronic Science and Technology of China","institution_ids":["https://openalex.org/I150229711"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014749523","display_name":"Maolin Wang","orcid":"https://orcid.org/0000-0001-7449-9834"},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Maolin Wang","raw_affiliation_strings":["University of Electronic Science and Technology of China"],"affiliations":[{"raw_affiliation_string":"University of Electronic Science and Technology of China","institution_ids":["https://openalex.org/I150229711"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067386968","display_name":"Jinmian Ye","orcid":null},"institutions":[{"id":"https://openalex.org/I4210101590","display_name":"Smile Train","ror":"https://ror.org/00x94td80","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210101590"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jinmian Ye","raw_affiliation_strings":["SMILE Lab"],"affiliations":[{"raw_affiliation_string":"SMILE Lab","institution_ids":["https://openalex.org/I4210101590"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100455958","display_name":"Fei Wang","orcid":"https://orcid.org/0000-0003-3462-8472"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Fei Wang","raw_affiliation_strings":["Cornell University"],"affiliations":[{"raw_affiliation_string":"Cornell University","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102906188","display_name":"Kun Bai","orcid":"https://orcid.org/0000-0002-3773-5364"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kun Bai","raw_affiliation_strings":["Tencent Inc"],"affiliations":[{"raw_affiliation_string":"Tencent Inc","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5051227924","display_name":"Zenglin Xu","orcid":"https://orcid.org/0000-0001-5550-6461"},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zenglin Xu","raw_affiliation_strings":["University of Electronic Science and Technology of China"],"affiliations":[{"raw_affiliation_string":"University of Electronic Science and Technology of China","institution_ids":["https://openalex.org/I150229711"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.493,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":96,"citation_normalized_percentile":{"value":0.999876,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"33","issue":"01","first_page":"4683","last_page":"4690"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9803,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9554,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.4624228}],"concepts":[{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.91462064},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76734865},{"id":"https://openalex.org/C133488467","wikidata":"https://www.wikidata.org/wiki/Q6673524","display_name":"Long short term memory","level":4,"score":0.6678692},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.6277306},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5400207},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.5178788},{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.49709252},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.4624228},{"id":"https://openalex.org/C124681953","wikidata":"https://www.wikidata.org/wiki/Q339062","display_name":"Decomposition","level":2,"score":0.42314142},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.41956526},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39451644},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.34776402},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09007332},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.33014683","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/4393/4271","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1811.07503","pdf_url":"https://arxiv.org/pdf/1811.07503","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.33014683","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/4393/4271","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1489737693","https://openalex.org/W1522734439","https://openalex.org/W1686946872","https://openalex.org/W1798945469","https://openalex.org/W1909234690","https://openalex.org/W1932274155","https://openalex.org/W1944615693","https://openalex.org/W1980176153","https://openalex.org/W1996904744","https://openalex.org/W1997076489","https://openalex.org/W2040006565","https://openalex.org/W2049209908","https://openalex.org/W2055228459","https://openalex.org/W2097039814","https://openalex.org/W2100916003","https://openalex.org/W2105101328","https://openalex.org/W2126574503","https://openalex.org/W2130942839","https://openalex.org/W2132267493","https://openalex.org/W2139893168","https://openalex.org/W2342662179","https://openalex.org/W2431890537","https://openalex.org/W2508429489","https://openalex.org/W2607101357","https://openalex.org/W2775020237","https://openalex.org/W2807812398","https://openalex.org/W2810112645","https://openalex.org/W2888987473","https://openalex.org/W2889186417","https://openalex.org/W2950248853","https://openalex.org/W2962698165","https://openalex.org/W2962988160","https://openalex.org/W2963048316","https://openalex.org/W2963524571","https://openalex.org/W2963704562","https://openalex.org/W2963758239","https://openalex.org/W2963838731","https://openalex.org/W4235765578","https://openalex.org/W4237044863","https://openalex.org/W4294557331","https://openalex.org/W4297749952","https://openalex.org/W4297775537"],"related_works":["https://openalex.org/W4387163678","https://openalex.org/W4385280324","https://openalex.org/W3031223029","https://openalex.org/W2950186459","https://openalex.org/W2912153778","https://openalex.org/W2897298721","https://openalex.org/W2781510240","https://openalex.org/W2569661359","https://openalex.org/W2242624680","https://openalex.org/W2170114491"],"abstract_inverted_index":{"Recurrent":[0,16],"Neural":[1],"Networks":[2],"(RNNs)":[3],"and":[4,14,60,72,129,163],"their":[5],"variants,":[6],"such":[7,57],"as":[8,36,58,96],"Long-Short":[9],"Term":[10],"Memory":[11],"(LSTM)":[12],"networks,":[13,19],"Gated":[15],"Unit":[17],"(GRU)":[18],"have":[20,149],"achieved":[21],"promising":[22,152],"performance":[23,153],"in":[24,31,43,46,66,138],"sequential":[25,47],"data":[26],"modeling.":[27],"The":[28],"hidden":[29],"layers":[30],"RNNs":[32,67,81,137],"can":[33,124],"be":[34],"regarded":[35],"the":[37,62,78,100,108,151,155,160],"memory":[38,70],"units,":[39],"which":[40],"are":[41],"helpful":[42],"storing":[44],"information":[45],"contexts.":[48],"However,":[49],"when":[50],"dealing":[51],"with":[52,112,159],"high":[53,69],"dimensional":[54],"input":[55,141],"data,":[56],"video":[59],"text,":[61],"input-to-hidden":[63,109],"linear":[64],"transformation":[65],"brings":[68],"usage":[71],"huge":[73],"computational":[74],"cost.":[75],"This":[76],"makes":[77],"training":[79,128],"of":[80,154],"very":[82],"difficult.":[83],"To":[84],"address":[85],"this":[86],"challenge,":[87],"we":[88],"propose":[89],"a":[90,132],"novel":[91],"compact":[92],"LSTM":[93,162],"model,":[94],"named":[95],"TR-LSTM,":[97],"by":[98],"utilizing":[99],"low-rank":[101],"tensor":[102,114],"ring":[103],"decomposition":[104,115],"(TRD)":[105],"to":[106],"reformulate":[107],"transformation.":[110],"Compared":[111],"other":[113,164],"methods,":[116],"TR-LSTM":[117,123,157],"is":[118],"more":[119],"stable.":[120],"In":[121],"addition,":[122],"complete":[125],"an":[126],"end-to-end":[127],"also":[130],"provide":[131],"fundamental":[133],"building":[134],"block":[135],"for":[136],"handling":[139],"large":[140],"data.":[142],"Experiments":[143],"on":[144],"real-world":[145],"action":[146],"recognition":[147],"datasets":[148],"demonstrated":[150],"proposed":[156],"compared":[158],"tensor-train":[161],"state-of-the-art":[165],"competitors.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2966234499","counts_by_year":[{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":15},{"year":2022,"cited_by_count":12},{"year":2021,"cited_by_count":28},{"year":2020,"cited_by_count":24},{"year":2019,"cited_by_count":6}],"updated_date":"2024-12-27T18:00:49.125248","created_date":"2019-08-13"}