{"id":"https://openalex.org/W2963742214","doi":"https://doi.org/10.1609/aaai.v33i01.33014448","title":"Block Belief Propagation for Parameter Learning in Markov Random Fields","display_name":"Block Belief Propagation for Parameter Learning in Markov Random Fields","publication_year":2019,"publication_date":"2019-07-17","ids":{"openalex":"https://openalex.org/W2963742214","doi":"https://doi.org/10.1609/aaai.v33i01.33014448","mag":"2963742214"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.33014448","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/4357/4235","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/4357/4235","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5032483127","display_name":"You L\u00fc","orcid":"https://orcid.org/0000-0002-4357-1888"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"funder","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"You Lu","raw_affiliation_strings":["Virginia Polytechnic Institute and State University"],"affiliations":[{"raw_affiliation_string":"Virginia Polytechnic Institute and State University","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100320723","display_name":"Zhiyuan Liu","orcid":"https://orcid.org/0000-0002-7709-2543"},"institutions":[{"id":"https://openalex.org/I2802236040","display_name":"University of Colorado System","ror":"https://ror.org/00jc20583","country_code":"US","type":"funder","lineage":["https://openalex.org/I2802236040"]},{"id":"https://openalex.org/I188538660","display_name":"University of Colorado Boulder","ror":"https://ror.org/02ttsq026","country_code":"US","type":"funder","lineage":["https://openalex.org/I188538660"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhiyuan Liu","raw_affiliation_strings":["University of Colorado Boulder"],"affiliations":[{"raw_affiliation_string":"University of Colorado Boulder","institution_ids":["https://openalex.org/I2802236040","https://openalex.org/I188538660"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002044887","display_name":"Bert Huang","orcid":"https://orcid.org/0000-0002-8548-7246"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"funder","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bert Huang","raw_affiliation_strings":["Virginia Polytechnic Institute and State University"],"affiliations":[{"raw_affiliation_string":"Virginia Polytechnic Institute and State University","institution_ids":["https://openalex.org/I859038795"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":"33","issue":"01","first_page":"4448","last_page":"4455"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9755,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9752,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/belief-propagation","display_name":"Belief Propagation","score":0.78326213},{"id":"https://openalex.org/keywords/graphical-model","display_name":"Graphical model","score":0.71122706},{"id":"https://openalex.org/keywords/approximate-inference","display_name":"Approximate inference","score":0.50228095}],"concepts":[{"id":"https://openalex.org/C152948882","wikidata":"https://www.wikidata.org/wiki/Q4060686","display_name":"Belief propagation","level":3,"score":0.78326213},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.745075},{"id":"https://openalex.org/C155846161","wikidata":"https://www.wikidata.org/wiki/Q1143367","display_name":"Graphical model","level":2,"score":0.71122706},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.632516},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.5832912},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.52937436},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.5261668},{"id":"https://openalex.org/C2777472644","wikidata":"https://www.wikidata.org/wiki/Q16968992","display_name":"Approximate inference","level":3,"score":0.50228095},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.44731575},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.41862565},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3990041},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34125486},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3081205},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.119375944},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.33014448","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/4357/4235","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1811.04064","pdf_url":"https://arxiv.org/pdf/1811.04064","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.33014448","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/4357/4235","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W121649270","https://openalex.org/W1511986666","https://openalex.org/W1550892302","https://openalex.org/W1686810756","https://openalex.org/W1728061942","https://openalex.org/W1828211540","https://openalex.org/W1910644077","https://openalex.org/W1950900001","https://openalex.org/W1984136080","https://openalex.org/W1986916218","https://openalex.org/W1999726054","https://openalex.org/W2070797946","https://openalex.org/W2079937789","https://openalex.org/W2082021597","https://openalex.org/W2096920988","https://openalex.org/W2105644991","https://openalex.org/W2111161343","https://openalex.org/W2115166723","https://openalex.org/W2120386375","https://openalex.org/W2124637492","https://openalex.org/W2135094946","https://openalex.org/W2136064009","https://openalex.org/W2166741250","https://openalex.org/W2167219413","https://openalex.org/W2169307919","https://openalex.org/W2169415915","https://openalex.org/W2186629860","https://openalex.org/W2536208356","https://openalex.org/W2569568557","https://openalex.org/W2586119848","https://openalex.org/W2806276451","https://openalex.org/W2900052049","https://openalex.org/W2963809785","https://openalex.org/W4293052541","https://openalex.org/W4308909683","https://openalex.org/W613121520"],"related_works":["https://openalex.org/W4297812452","https://openalex.org/W4286382505","https://openalex.org/W3180766726","https://openalex.org/W2962950510","https://openalex.org/W2562956507","https://openalex.org/W2501500329","https://openalex.org/W2153267847","https://openalex.org/W2070797946","https://openalex.org/W1522296211","https://openalex.org/W1520194733"],"abstract_inverted_index":{"Traditional":[0],"learning":[1,42],"methods":[2,24],"for":[3,22],"training":[4,112],"Markov":[5],"random":[6],"fields":[7],"require":[8],"doing":[9],"inference":[10,60,97],"over":[11,110],"all":[12],"variables":[13],"to":[14,51,58,87],"compute":[15,52,59],"the":[16,28,31,56,62,67,76,79,84,88],"likelihood":[17],"gradient.":[18],"The":[19],"iteration":[20,68],"complexity":[21,69],"those":[23],"therefore":[25],"scales":[26],"with":[27,75],"size":[29,77],"of":[30,48,70,78],"graphical":[32,64],"models.":[33],"In":[34],"this":[35],"paper,":[36],"we":[37,104],"propose":[38],"block":[39],"belief":[40],"propagation":[41],"(BBPL),":[43],"which":[44],"uses":[45],"block-coordinate":[46],"updates":[47],"approximate":[49,53],"marginals":[50],"gradients,":[54],"removing":[55],"need":[57],"on":[61],"entire":[63],"model.":[65],"Thus,":[66],"BBPL":[71],"does":[72],"not":[73],"scale":[74],"graphs.":[80],"We":[81],"prove":[82],"that":[83,92],"method":[85],"converges":[86],"same":[89],"solution":[90],"as":[91],"obtained":[93],"by":[94],"using":[95],"full":[96],"per":[98],"iteration,":[99],"despite":[100],"these":[101],"approximations,":[102],"and":[103],"empirically":[105],"demonstrate":[106],"its":[107],"scalability":[108],"improvements":[109],"standard":[111],"methods.":[113]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963742214","counts_by_year":[],"updated_date":"2025-01-25T00:29:08.585131","created_date":"2019-07-30"}