{"id":"https://openalex.org/W2904530076","doi":"https://doi.org/10.1609/aaai.v33i01.3301281","title":"Meimei: An Efficient Probabilistic Approach for Semantically Annotating Tables","display_name":"Meimei: An Efficient Probabilistic Approach for Semantically Annotating Tables","publication_year":2019,"publication_date":"2019-07-17","ids":{"openalex":"https://openalex.org/W2904530076","doi":"https://doi.org/10.1609/aaai.v33i01.3301281","mag":"2904530076"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.3301281","pdf_url":"https://aaai.org/ojs/index.php/AAAI/article/download/3796/3674","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://aaai.org/ojs/index.php/AAAI/article/download/3796/3674","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5060037914","display_name":"Kunihiro Takeoka","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kunihiro Takeoka","raw_affiliation_strings":["NEC Corporation"],"affiliations":[{"raw_affiliation_string":"NEC Corporation","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044722101","display_name":"Masafumi Oyamada","orcid":"https://orcid.org/0000-0002-4045-7350"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Masafumi Oyamada","raw_affiliation_strings":["NEC Corporation"],"affiliations":[{"raw_affiliation_string":"NEC Corporation","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036964459","display_name":"Shinji Nakadai","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shinji Nakadai","raw_affiliation_strings":["NEC Corporation"],"affiliations":[{"raw_affiliation_string":"NEC Corporation","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5113946036","display_name":"Takeshi Okadome","orcid":null},"institutions":[{"id":"https://openalex.org/I206011266","display_name":"Kwansei Gakuin University","ror":"https://ror.org/02qf2tx24","country_code":"JP","type":"education","lineage":["https://openalex.org/I206011266"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takeshi Okadome","raw_affiliation_strings":["Kwansei Gakuin University"],"affiliations":[{"raw_affiliation_string":"Kwansei Gakuin University","institution_ids":["https://openalex.org/I206011266"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.218,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":36,"citation_normalized_percentile":{"value":0.999317,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"33","issue":"01","first_page":"281","last_page":"288"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9887,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.986,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/table","display_name":"Table (database)","score":0.7237736}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7958497},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.73357415},{"id":"https://openalex.org/C45235069","wikidata":"https://www.wikidata.org/wiki/Q278425","display_name":"Table (database)","level":2,"score":0.7237736},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.7026506},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4748992},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.46338782},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4491142},{"id":"https://openalex.org/C2780551164","wikidata":"https://www.wikidata.org/wiki/Q2306599","display_name":"Column (typography)","level":3,"score":0.44497222},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.43345633},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.32992998},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.11548662},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.3301281","pdf_url":"https://aaai.org/ojs/index.php/AAAI/article/download/3796/3674","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v33i01.3301281","pdf_url":"https://aaai.org/ojs/index.php/AAAI/article/download/3796/3674","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W2092364718","https://openalex.org/W2111869785","https://openalex.org/W2127795553","https://openalex.org/W2132314908","https://openalex.org/W2136480620","https://openalex.org/W2154658848","https://openalex.org/W2432356473","https://openalex.org/W2521441617","https://openalex.org/W2522154031","https://openalex.org/W2529049456","https://openalex.org/W3120740533","https://openalex.org/W4295093978","https://openalex.org/W4386506836","https://openalex.org/W92812941"],"related_works":["https://openalex.org/W3123448197","https://openalex.org/W2625833328","https://openalex.org/W2392921965","https://openalex.org/W2377979023","https://openalex.org/W2361861616","https://openalex.org/W2358755282","https://openalex.org/W2263699433","https://openalex.org/W2218034408","https://openalex.org/W1533177136","https://openalex.org/W1510114644"],"abstract_inverted_index":{"Given":[0],"a":[1,121,130],"large":[2],"amount":[3],"of":[4,50,64,83,97,155,176,227,237],"table":[5,42,65,84,98,106,125],"data,":[6],"how":[7],"can":[8],"we":[9,17],"find":[10],"the":[11,15,24,61,152,169,192,218,225,228,245],"tables":[12,242],"that":[13,55,128],"contain":[14],"contents":[16],"want?":[18],"A":[19],"naive":[20],"search":[21],"fails":[22],"when":[23],"column":[25],"names":[26],"are":[27,37],"ambiguous,":[28],"such":[29,86,178],"as":[30,87,179],"if":[31],"columns":[32,67],"containing":[33],"stock":[34],"price":[35],"information":[36],"named":[38,44],"\u201cClose\u201d":[39],"in":[40,46,151,168],"one":[41],"and":[43,111,195],"\u201cP\u201d":[45],"another":[47],"table.One":[48],"way":[49],"dealing":[51],"with":[52,77,108,134],"this":[53,78],"problem":[54,79],"has":[56],"been":[57],"gaining":[58],"attention":[59],"is":[60,116,160,187,206],"semantic":[62,156,235],"annotation":[63,127,236],"data":[66,85,107,126,177,239],"by":[68],"using":[69,146,165],"canonical":[70],"knowledge.":[71],"While":[72],"previous":[73,142],"studies":[74],"successfully":[75],"dealt":[76],"for":[80,93,124,221,234],"specific":[81],"types":[82,96,175],"web":[88],"tables,":[89],"it":[90],"still":[91],"remains":[92],"various":[94,174],"other":[95],"data:":[99],"(1)":[100,158],"most":[101],"approaches":[102,143,233],"do":[103],"not":[104,117],"handle":[105],"numerical":[109,180],"values,":[110],"(2)":[112,185],"their":[113],"predictive":[114,148,202],"performance":[115],"satisfactory.This":[118],"paper":[119],"presents":[120],"novel":[122],"approach":[123,230],"combines":[129],"latent":[131],"probabilistic":[132,153,170,196],"model":[133,197],"multilabel":[135],"classifiers.":[136],"It":[137,159,186,205],"features":[138],"three":[139],"advantages":[140],"over":[141,231],"due":[144,163,190,209],"to":[145,164,182,191,200,210],"highly":[147],"multi-label":[149,166,193,215],"classifiers":[150,167,194,216],"computation":[154],"annotation.":[157],"more":[161,188,207],"versatile":[162],"model,":[171],"which":[172],"enables":[173],"values":[181],"be":[183],"supported.":[184],"accurate":[189],"working":[198],"together":[199],"improve":[201],"performance.":[203],"(3)":[204],"efficient":[208],"potential":[211],"functions":[212],"based":[213],"on":[214],"reducing":[217],"computational":[219],"cost":[220],"annotation.Extensive":[222],"experiments":[223],"demonstrated":[224],"superiority":[226],"proposed":[229],"state-of-the-art":[232],"real":[238],"(183":[240],"human-annotated":[241],"obtained":[243],"from":[244],"UCI":[246],"Machine":[247],"Learning":[248],"Repository).":[249]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2904530076","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":7},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":3}],"updated_date":"2024-12-11T15:14:10.641701","created_date":"2018-12-22"}