{"id":"https://openalex.org/W2782057162","doi":"https://doi.org/10.1609/aaai.v32i1.12228","title":"Cooperative Training of Deep Aggregation Networks for RGB-D Action Recognition","display_name":"Cooperative Training of Deep Aggregation Networks for RGB-D Action Recognition","publication_year":2018,"publication_date":"2018-04-27","ids":{"openalex":"https://openalex.org/W2782057162","doi":"https://doi.org/10.1609/aaai.v32i1.12228","mag":"2782057162"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v32i1.12228","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/12228/12087","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/12228/12087","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042680345","display_name":"Pichao Wang","orcid":"https://orcid.org/0000-0002-1430-0237"},"institutions":[{"id":"https://openalex.org/I204824540","display_name":"University of Wollongong","ror":"https://ror.org/00jtmb277","country_code":"AU","type":"funder","lineage":["https://openalex.org/I204824540"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Pichao Wang","raw_affiliation_strings":["Motovis Inc","University of Wollongong"],"affiliations":[{"raw_affiliation_string":"Motovis Inc","institution_ids":[]},{"raw_affiliation_string":"University of Wollongong","institution_ids":["https://openalex.org/I204824540"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100695040","display_name":"Wanqing Li","orcid":"https://orcid.org/0000-0002-4427-2687"},"institutions":[{"id":"https://openalex.org/I204824540","display_name":"University of Wollongong","ror":"https://ror.org/00jtmb277","country_code":"AU","type":"funder","lineage":["https://openalex.org/I204824540"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Wanqing Li","raw_affiliation_strings":["University of Wollongong"],"affiliations":[{"raw_affiliation_string":"University of Wollongong","institution_ids":["https://openalex.org/I204824540"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063979916","display_name":"Jun Wan","orcid":"https://orcid.org/0000-0002-4735-2885"},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Wan","raw_affiliation_strings":["Institute of Automation, Chinese Academy of Sciences"],"affiliations":[{"raw_affiliation_string":"Institute of Automation, Chinese Academy of Sciences","institution_ids":["https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081319088","display_name":"Philip Ogunbona","orcid":"https://orcid.org/0000-0003-4119-2873"},"institutions":[{"id":"https://openalex.org/I204824540","display_name":"University of Wollongong","ror":"https://ror.org/00jtmb277","country_code":"AU","type":"funder","lineage":["https://openalex.org/I204824540"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Philip Ogunbona","raw_affiliation_strings":["University of Wollongong"],"affiliations":[{"raw_affiliation_string":"University of Wollongong","institution_ids":["https://openalex.org/I204824540"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101727888","display_name":"Xinwang Liu","orcid":"https://orcid.org/0000-0001-9066-1475"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinwang Liu","raw_affiliation_strings":["National University of Defense Technology"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology","institution_ids":["https://openalex.org/I170215575"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.534,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":79,"citation_normalized_percentile":{"value":0.999872,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"32","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.997,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/softmax-function","display_name":"Softmax function","score":0.9244716},{"id":"https://openalex.org/keywords/modality","display_name":"Modality (human\u2013computer interaction)","score":0.72104824},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.7028309},{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.69280845},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.51502705},{"id":"https://openalex.org/keywords/modalities","display_name":"Modalities","score":0.4864359}],"concepts":[{"id":"https://openalex.org/C188441871","wikidata":"https://www.wikidata.org/wiki/Q7554146","display_name":"Softmax function","level":3,"score":0.9244716},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7546675},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7440044},{"id":"https://openalex.org/C2780226545","wikidata":"https://www.wikidata.org/wiki/Q6888030","display_name":"Modality (human\u2013computer interaction)","level":2,"score":0.72104824},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.7028309},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.69280845},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.63360643},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5916767},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.53483367},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.51502705},{"id":"https://openalex.org/C2779903281","wikidata":"https://www.wikidata.org/wiki/Q6888026","display_name":"Modalities","level":2,"score":0.4864359},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.4763187},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.42868435},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.42793337},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v32i1.12228","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/12228/12087","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1801.01080","pdf_url":"https://arxiv.org/pdf/1801.01080","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v32i1.12228","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/12228/12087","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.75,"display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W118019982","https://openalex.org/W1522734439","https://openalex.org/W1588788171","https://openalex.org/W1686810756","https://openalex.org/W1893516992","https://openalex.org/W1895914852","https://openalex.org/W1898340191","https://openalex.org/W1926645898","https://openalex.org/W1947481528","https://openalex.org/W1950788856","https://openalex.org/W1983364832","https://openalex.org/W1998808035","https://openalex.org/W2001696967","https://openalex.org/W2009701012","https://openalex.org/W2042713909","https://openalex.org/W2048821851","https://openalex.org/W2056339039","https://openalex.org/W2059106304","https://openalex.org/W2085735683","https://openalex.org/W2091911422","https://openalex.org/W2105101328","https://openalex.org/W2156303437","https://openalex.org/W2184544926","https://openalex.org/W2294438834","https://openalex.org/W2309561466","https://openalex.org/W2342311830","https://openalex.org/W2344034899","https://openalex.org/W2428123325","https://openalex.org/W2462996230","https://openalex.org/W2475715656","https://openalex.org/W2510111515","https://openalex.org/W2510185399","https://openalex.org/W2520774990","https://openalex.org/W2523978282","https://openalex.org/W2578918572","https://openalex.org/W2583941031","https://openalex.org/W2591961134","https://openalex.org/W2950094539","https://openalex.org/W2952186347","https://openalex.org/W2952956895","https://openalex.org/W2962728572","https://openalex.org/W2964134613","https://openalex.org/W3099206234","https://openalex.org/W4230005465"],"related_works":["https://openalex.org/W73545470","https://openalex.org/W4320153225","https://openalex.org/W4293261942","https://openalex.org/W4224266612","https://openalex.org/W3128220219","https://openalex.org/W3125968744","https://openalex.org/W3119773509","https://openalex.org/W3095152779","https://openalex.org/W2383394264","https://openalex.org/W2167701463"],"abstract_inverted_index":{"A":[0],"novel":[1],"deep":[2,63],"neural":[3,32],"network":[4,33],"training":[5],"paradigm":[6],"that":[7,60],"exploits":[8],"the":[9,47,57,62,76,79,83,89,123,130,140,149,154,157,163],"conjoint":[10],"information":[11],"in":[12,19,139,156],"multiple":[13],"heterogeneous":[14,107],"sources":[15],"is":[16,165],"proposed.":[17],"Specifically,":[18],"a":[20,29,96,100],"RGB-D":[21,176],"based":[22],"action":[23,53,177],"recognition":[24,155,178],"task,":[25],"it":[26,120],"cooperatively":[27],"trains":[28],"single":[30],"convolutional":[31],"(named":[34],"c-ConvNet)":[35],"on":[36,173],"both":[37,104,122],"RGB":[38,133],"visual":[39],"features":[40,51,65,86],"and":[41,44,87,99,106,115,119,125,134,142,151,183,187,194],"depth":[42,135],"features,":[43],"deeply":[45,84],"aggregates":[46],"two":[48,174],"kinds":[49],"of":[50,82,113,148,162],"for":[52,66,103],"recognition.":[54],"Differently":[55],"from":[56],"conventional":[58],"ConvNet":[59],"learns":[61],"separable":[64],"homogeneous":[67,105],"modality-based":[68],"classification":[69],"with":[70],"only":[71,160],"one":[72,161,188],"softmax":[73,101],"loss":[74,98,102,111],"function,":[75],"c-ConvNet":[77],"enhances":[78],"discriminative":[80],"power":[81],"learned":[85],"weakens":[88],"undesired":[90],"modality":[91],"discrepancy":[92],"by":[93,146],"jointly":[94],"optimizing":[95],"ranking":[97,110],"modalities.":[108],"The":[109,167],"consists":[112],"intra-modality":[114,124],"cross-modality":[116,126],"triplet":[117],"losses,":[118],"reduces":[121],"feature":[127],"variations.":[128],"Furthermore,":[129],"correlations":[131],"between":[132],"data":[136],"are":[137],"embedded":[138],"c-ConvNet,":[141],"can":[143],"be":[144],"retrieved":[145],"either":[147],"modalities":[150,164],"contribute":[152],"to":[153],"case":[158],"even":[159],"available.":[166],"proposed":[168],"method":[169],"was":[170],"extensively":[171],"evaluated":[172],"large":[175],"datasets,":[179,186],"ChaLearn":[180],"LAP":[181],"IsoGD":[182],"NTU":[184],"RGB+D":[185],"small":[189],"dataset,":[190],"SYSU":[191],"3D":[192],"HOI,":[193],"achieved":[195],"state-of-the-art":[196],"results.":[197]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2782057162","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":15},{"year":2022,"cited_by_count":18},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":16},{"year":2019,"cited_by_count":4},{"year":2018,"cited_by_count":6}],"updated_date":"2025-04-22T16:01:42.435693","created_date":"2018-01-12"}