{"id":"https://openalex.org/W2963532813","doi":"https://doi.org/10.1609/aaai.v32i1.11635","title":"Attend and Diagnose: Clinical Time Series Analysis Using Attention Models","display_name":"Attend and Diagnose: Clinical Time Series Analysis Using Attention Models","publication_year":2018,"publication_date":"2018-04-29","ids":{"openalex":"https://openalex.org/W2963532813","doi":"https://doi.org/10.1609/aaai.v32i1.11635","mag":"2963532813"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v32i1.11635","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/11635/11494","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/11635/11494","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101697214","display_name":"Huan Song","orcid":"https://orcid.org/0000-0002-9639-9962"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"funder","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Huan Song","raw_affiliation_strings":["Arizona State University"],"affiliations":[{"raw_affiliation_string":"Arizona State University","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103925175","display_name":"Deepta Rajan","orcid":null},"institutions":[{"id":"https://openalex.org/I4210085935","display_name":"IBM Research - Almaden","ror":"https://ror.org/005w8dd04","country_code":"US","type":"facility","lineage":["https://openalex.org/I1341412227","https://openalex.org/I4210085935","https://openalex.org/I4210114115"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Deepta Rajan","raw_affiliation_strings":["IBM Almaden Research Center"],"affiliations":[{"raw_affiliation_string":"IBM Almaden Research Center","institution_ids":["https://openalex.org/I4210085935"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046632395","display_name":"Jayaraman J. Thiagarajan","orcid":"https://orcid.org/0000-0002-8517-5816"},"institutions":[{"id":"https://openalex.org/I1282311441","display_name":"Lawrence Livermore National Laboratory","ror":"https://ror.org/041nk4h53","country_code":"US","type":"funder","lineage":["https://openalex.org/I1282311441","https://openalex.org/I1330989302","https://openalex.org/I198811213","https://openalex.org/I4210138311"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jayaraman Thiagarajan","raw_affiliation_strings":["Lawrence Livermore National Labs"],"affiliations":[{"raw_affiliation_string":"Lawrence Livermore National Labs","institution_ids":["https://openalex.org/I1282311441"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5074371899","display_name":"Andreas Spanias","orcid":"https://orcid.org/0000-0003-0306-9348"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"funder","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Andreas Spanias","raw_affiliation_strings":["Arizona State University"],"affiliations":[{"raw_affiliation_string":"Arizona State University","institution_ids":["https://openalex.org/I55732556"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":11.326,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":388,"citation_normalized_percentile":{"value":0.999904,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"32","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.958,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9407,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.81905997},{"id":"https://openalex.org/keywords/interpolation","display_name":"Interpolation","score":0.53915334}],"concepts":[{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.8342955},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83270866},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.81905997},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.67609507},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6496461},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5716333},{"id":"https://openalex.org/C137800194","wikidata":"https://www.wikidata.org/wiki/Q11713455","display_name":"Interpolation (computer graphics)","level":3,"score":0.53915334},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.50445926},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.4870882},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.46897873},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.42751575},{"id":"https://openalex.org/C48103436","wikidata":"https://www.wikidata.org/wiki/Q599031","display_name":"State (computer science)","level":2,"score":0.42027566},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.40732604},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.14024991},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.101711184},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v32i1.11635","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/11635/11494","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.osti.gov/biblio/1424601","pdf_url":null,"source":{"id":"https://openalex.org/S4306402487","display_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I139351228","host_organization_name":"Office of Scientific and Technical Information","host_organization_lineage":["https://openalex.org/I139351228"],"host_organization_lineage_names":["Office of Scientific and Technical Information"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1711.03905","pdf_url":"https://arxiv.org/pdf/1711.03905","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v32i1.11635","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/11635/11494","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1514535095","https://openalex.org/W1522301498","https://openalex.org/W1610818344","https://openalex.org/W1832693441","https://openalex.org/W1869752048","https://openalex.org/W2130942839","https://openalex.org/W2132927459","https://openalex.org/W2133564696","https://openalex.org/W2396881363","https://openalex.org/W2517221375","https://openalex.org/W2520645534","https://openalex.org/W2525778437","https://openalex.org/W2612675303","https://openalex.org/W2949615363","https://openalex.org/W2962699674","https://openalex.org/W2963078493","https://openalex.org/W3101973032","https://openalex.org/W3104486441","https://openalex.org/W4385245566","https://openalex.org/W48012943"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W4230315250","https://openalex.org/W4225394202","https://openalex.org/W3031223029","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2028665553"],"abstract_inverted_index":{"With":[0],"widespread":[1],"adoption":[2],"of":[3,51,142],"electronic":[4],"health":[5],"records,":[6],"there":[7],"is":[8],"an":[9],"increased":[10],"emphasis":[11],"for":[12,93,101,132],"predictive":[13],"models":[14,100,147,172],"that":[15,160],"can":[16],"effectively":[17],"deal":[18],"with":[19,30,148,176],"clinical":[20,45,102],"time-series":[21,103],"data.":[22],"Powered":[23],"by":[24],"Recurrent":[25],"Neural":[26],"Network":[27],"(RNN)":[28],"architectures":[29,69],"Long":[31],"Short-Term":[32],"Memory":[33],"(LSTM)":[34],"units,":[35],"deep":[36],"neural":[37],"networks":[38],"have":[39,77],"achieved":[40],"state-of-the-art":[41,165],"results":[42],"in":[43,81,84,167],"several":[44],"prediction":[46],"tasks.":[47,151],"Despite":[48],"the":[49,94,111,153,161],"success":[50,80],"RNN,":[52],"its":[53],"sequential":[54],"nature":[55],"prohibits":[56],"parallelized":[57],"computing,":[58],"thus":[59],"making":[60],"it":[61],"inefficient":[62],"particularly":[63],"when":[64],"processing":[65],"long":[66],"sequences.":[67],"Recently,":[68],"which":[70,118],"are":[71],"based":[72],"solely":[73],"on":[74],"attention":[75,99],"mechanisms":[76],"shown":[78],"remarkable":[79],"transduction":[82],"tasks":[83],"NLP,":[85],"while":[86],"being":[87],"computationally":[88],"superior.":[89],"In":[90],"this":[91],"paper,":[92],"first":[95],"time,":[96],"we":[97,137,158],"utilize":[98],"modeling,":[104],"thereby":[105],"dispensing":[106],"recurrence":[107],"entirely.":[108],"We":[109],"develop":[110,138],"SAnD":[112,143],"(Simply":[113],"Attend":[114],"and":[115,124,128,173],"Diagnose)":[116],"architecture,":[117],"employs":[119],"a":[120,139],"masked,":[121],"self-attention":[122],"mechanism,":[123],"uses":[125],"positional":[126],"encoding":[127],"dense":[129],"interpolation":[130],"strategies":[131],"incorporating":[133],"temporal":[134],"order.":[135],"Furthermore,":[136],"multi-task":[140],"variant":[141],"to":[144],"jointly":[145],"infer":[146],"multiple":[149],"diagnosis":[150],"Using":[152],"recent":[154],"MIMIC-III":[155],"benchmark":[156],"datasets,":[157],"demonstrate":[159],"proposed":[162],"approach":[163],"achieves":[164],"performance":[166],"all":[168],"tasks,":[169],"outperforming":[170],"LSTM":[171],"classical":[174],"baselines":[175],"hand-engineered":[177],"features.":[178]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963532813","counts_by_year":[{"year":2025,"cited_by_count":9},{"year":2024,"cited_by_count":51},{"year":2023,"cited_by_count":75},{"year":2022,"cited_by_count":67},{"year":2021,"cited_by_count":78},{"year":2020,"cited_by_count":62},{"year":2019,"cited_by_count":36},{"year":2018,"cited_by_count":10}],"updated_date":"2025-04-17T20:15:55.533157","created_date":"2019-07-30"}