{"id":"https://openalex.org/W2788769393","doi":"https://doi.org/10.1609/aaai.v32i1.11267","title":"Deep Asymmetric Transfer Network for Unbalanced Domain Adaptation","display_name":"Deep Asymmetric Transfer Network for Unbalanced Domain Adaptation","publication_year":2018,"publication_date":"2018-04-25","ids":{"openalex":"https://openalex.org/W2788769393","doi":"https://doi.org/10.1609/aaai.v32i1.11267","mag":"2788769393"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v32i1.11267","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/11267/11126","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/11267/11126","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008647105","display_name":"Daixin Wang","orcid":"https://orcid.org/0000-0002-5166-0362"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Daixin Wang","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009228005","display_name":"Peng Cui","orcid":"https://orcid.org/0000-0003-2957-8511"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peng Cui","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100339293","display_name":"Wenwu Zhu","orcid":"https://orcid.org/0000-0003-2236-9290"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenwu Zhu","raw_affiliation_strings":["Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.388,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":44,"citation_normalized_percentile":{"value":0.794756,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"32","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9872,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9841,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.6247082},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.622894},{"id":"https://openalex.org/keywords/domain-adaptation","display_name":"Domain Adaptation","score":0.58087754}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.74571276},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6718792},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.6247082},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.622894},{"id":"https://openalex.org/C2776434776","wikidata":"https://www.wikidata.org/wiki/Q19246213","display_name":"Domain adaptation","level":3,"score":0.58087754},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.57574993},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.54724455},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.44470537},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44262615},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09760079},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v32i1.11267","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/11267/11126","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v32i1.11267","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/11267/11126","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.73,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1489116628","https://openalex.org/W1665214252","https://openalex.org/W1686810756","https://openalex.org/W1779010541","https://openalex.org/W179875071","https://openalex.org/W1880262756","https://openalex.org/W2007972815","https://openalex.org/W2008056655","https://openalex.org/W2028285070","https://openalex.org/W2050398567","https://openalex.org/W2062518264","https://openalex.org/W2098355853","https://openalex.org/W2100664256","https://openalex.org/W2108561737","https://openalex.org/W2124386111","https://openalex.org/W2136504847","https://openalex.org/W2149933564","https://openalex.org/W2156940638","https://openalex.org/W2159291411","https://openalex.org/W2161381512","https://openalex.org/W2163605009","https://openalex.org/W2165698076","https://openalex.org/W2171068337","https://openalex.org/W2180844455","https://openalex.org/W2184188583","https://openalex.org/W2261310161","https://openalex.org/W2280985394","https://openalex.org/W22861983","https://openalex.org/W2393319904","https://openalex.org/W2396976214","https://openalex.org/W2422697180","https://openalex.org/W2557865186","https://openalex.org/W2913932916","https://openalex.org/W2951670162","https://openalex.org/W3120421331","https://openalex.org/W4231510805","https://openalex.org/W4253741391"],"related_works":["https://openalex.org/W4375928479","https://openalex.org/W4281381188","https://openalex.org/W4206357785","https://openalex.org/W3198847674","https://openalex.org/W3192840557","https://openalex.org/W3167935049","https://openalex.org/W3131673289","https://openalex.org/W3080655457","https://openalex.org/W3023427754","https://openalex.org/W2951211570"],"abstract_inverted_index":{"Recently,":[0],"domain":[1,38,60,77,108,128,141,145,151],"adaptation":[2,31,78],"based":[3],"on":[4,174,218],"deep":[5,27,76,165],"models":[6],"has":[7,66],"been":[8],"a":[9,23,36,92,115,135,199,226],"promising":[10],"way":[11],"to":[12,42,91,122,142,157,169,194],"deal":[13],"with":[14,17,39,153],"the":[15,33,43,48,58,71,82,96,106,124,139,143,149,158,164,175,181,196,206,210],"domains":[16,52,86],"scarce":[18],"labeled":[19],"data,":[20,186],"which":[21,101],"is":[22,61,102,167],"critical":[24],"problem":[25,125,183],"for":[26,105],"learning":[28],"models.":[29],"Domain":[30],"propagates":[32],"knowledge":[34,69,197],"from":[35,138,198],"source":[37,49,59,83,97,144,150,177],"rich":[40],"information":[41],"target":[44,51,72,85,99,140,159],"domain.":[45,73,160,178],"In":[46,110],"reality,":[47],"and":[50,64,84,88,98,146],"are":[53],"mostly":[54],"unbalanced":[55,107,127],"in":[56],"that":[57,223],"more":[62,67,154,172],"resource-rich":[63,176],"thus":[65],"reliable":[68],"than":[70],"However,":[74],"existing":[75],"approaches":[79],"often":[80],"pre-assume":[81],"balanced":[87],"equally,":[89],"leading":[90],"medium":[93],"solution":[94],"between":[95],"domains,":[100],"not":[103],"optimal":[104],"adaptation.":[109,129],"this":[111],"paper,":[112],"we":[113,187],"propose":[114,189],"novel":[116],"Deep":[117],"Asymmetric":[118],"Transfer":[119],"Network":[120],"(DATN)":[121],"address":[123],"of":[126,184,201,213],"Specifically,":[130],"our":[131],"model":[132,166],"will":[133],"learn":[134],"transfer":[136,192],"function":[137],"meanwhile":[147],"adapting":[148],"classifier":[152],"discriminative":[155],"power":[156],"By":[161],"doing":[162],"this,":[163],"able":[168],"adaptively":[170],"put":[171],"emphasis":[173],"To":[179],"alleviate":[180],"scarcity":[182],"supervised":[185],"further":[188],"an":[190],"unsupervised":[191,202],"method":[193],"propagate":[195],"lot":[200],"data":[203,212],"by":[204],"minimizing":[205],"distribution":[207],"discrepancy":[208],"over":[209,229],"unlabeled":[211],"two":[214,219],"domains.":[215],"The":[216],"experiments":[217],"real-world":[220],"datasets":[221],"demonstrate":[222],"DATN":[224],"attains":[225],"substantial":[227],"gain":[228],"state-of-the-art":[230],"methods.":[231]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2788769393","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":28},{"year":2019,"cited_by_count":5},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1}],"updated_date":"2025-04-22T19:53:51.520474","created_date":"2018-03-06"}