{"id":"https://openalex.org/W2219073195","doi":"https://doi.org/10.1609/aaai.v25i1.7933","title":"Multi-Level Cluster Indicator Decompositions of Matrices and Tensors","display_name":"Multi-Level Cluster Indicator Decompositions of Matrices and Tensors","publication_year":2011,"publication_date":"2011-08-04","ids":{"openalex":"https://openalex.org/W2219073195","doi":"https://doi.org/10.1609/aaai.v25i1.7933","mag":"2219073195"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v25i1.7933","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/7933/7792","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://ojs.aaai.org/index.php/AAAI/article/download/7933/7792","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101186016","display_name":"Dijun Luo","orcid":null},"institutions":[{"id":"https://openalex.org/I189196454","display_name":"The University of Texas at Arlington","ror":"https://ror.org/019kgqr73","country_code":"US","type":"funder","lineage":["https://openalex.org/I189196454"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dijun Luo","raw_affiliation_strings":["The University of Texas at Arlington"],"affiliations":[{"raw_affiliation_string":"The University of Texas at Arlington","institution_ids":["https://openalex.org/I189196454"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102823200","display_name":"Chris Ding","orcid":"https://orcid.org/0009-0009-3374-1941"},"institutions":[{"id":"https://openalex.org/I189196454","display_name":"The University of Texas at Arlington","ror":"https://ror.org/019kgqr73","country_code":"US","type":"funder","lineage":["https://openalex.org/I189196454"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chris Ding","raw_affiliation_strings":["The University of Texas at Arlington"],"affiliations":[{"raw_affiliation_string":"The University of Texas at Arlington","institution_ids":["https://openalex.org/I189196454"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5060016795","display_name":"Heng Huang","orcid":"https://orcid.org/0000-0002-3483-8333"},"institutions":[{"id":"https://openalex.org/I189196454","display_name":"The University of Texas at Arlington","ror":"https://ror.org/019kgqr73","country_code":"US","type":"funder","lineage":["https://openalex.org/I189196454"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Heng Huang","raw_affiliation_strings":["The University of Texas at Arlington"],"affiliations":[{"raw_affiliation_string":"The University of Texas at Arlington","institution_ids":["https://openalex.org/I189196454"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.152,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.0625,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":72},"biblio":{"volume":"25","issue":"1","first_page":"423","last_page":"428"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9743,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11304","display_name":"Advanced Neuroimaging Techniques and Applications","score":0.9437,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.69693875},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.58169925},{"id":"https://openalex.org/keywords/tucker-decomposition","display_name":"Tucker Decomposition","score":0.46061397}],"concepts":[{"id":"https://openalex.org/C22789450","wikidata":"https://www.wikidata.org/wiki/Q420904","display_name":"Singular value decomposition","level":2,"score":0.9220512},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.7370973},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.69693875},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.66665107},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.58169925},{"id":"https://openalex.org/C124681953","wikidata":"https://www.wikidata.org/wiki/Q339062","display_name":"Decomposition","level":2,"score":0.5802998},{"id":"https://openalex.org/C12362212","wikidata":"https://www.wikidata.org/wiki/Q728435","display_name":"Linear subspace","level":2,"score":0.5450573},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.53493565},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.49034715},{"id":"https://openalex.org/C42704193","wikidata":"https://www.wikidata.org/wiki/Q7851097","display_name":"Tucker decomposition","level":4,"score":0.46061397},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45257184},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.45146465},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4134774},{"id":"https://openalex.org/C2986737658","wikidata":"https://www.wikidata.org/wiki/Q30103009","display_name":"Tensor decomposition","level":3,"score":0.33579844},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28970128},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.17456892},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.16943002},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.093214005},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.06883034},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v25i1.7933","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/7933/7792","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1609/aaai.v25i1.7933","pdf_url":"https://ojs.aaai.org/index.php/AAAI/article/download/7933/7792","source":{"id":"https://openalex.org/S4210191458","display_name":"Proceedings of the AAAI Conference on Artificial Intelligence","issn_l":"2159-5399","issn":["2159-5399","2374-3468"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310320058","host_organization_name":"Association for the Advancement of Artificial Intelligence","host_organization_lineage":["https://openalex.org/P4310320058"],"host_organization_lineage_names":["Association for the Advancement of Artificial Intelligence"],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W2018282388","https://openalex.org/W2024165284","https://openalex.org/W2043545458","https://openalex.org/W2110283584","https://openalex.org/W2113055885","https://openalex.org/W2140862024","https://openalex.org/W2147152072","https://openalex.org/W2149942697","https://openalex.org/W2150692003","https://openalex.org/W2154357715","https://openalex.org/W2169376485","https://openalex.org/W240455286","https://openalex.org/W2611015177","https://openalex.org/W2762724995"],"related_works":["https://openalex.org/W4301603585","https://openalex.org/W4226434912","https://openalex.org/W3158347913","https://openalex.org/W3108343813","https://openalex.org/W2782904003","https://openalex.org/W2654090051","https://openalex.org/W2150953077","https://openalex.org/W2133814741","https://openalex.org/W2118633810","https://openalex.org/W1995410415"],"abstract_inverted_index":{"A":[0],"main":[1],"challenging":[2],"problem":[3],"for":[4,33,101],"many":[5],"machine":[6],"learning":[7],"and":[8,18,48,124],"data":[9,17,29,63,93],"mining":[10],"applications":[11],"is":[12],"that":[13,24,88],"the":[14,59,68,102],"amount":[15],"of":[16,27,62,105],"features":[19],"are":[20,30,46,74,89],"very":[21],"large,":[22],"so":[23],"low-rank":[25,42],"approximations":[26,44],"original":[28],"often":[31],"required":[32],"efficient":[34],"computation.":[35],"We":[36,57,77,95],"propose":[37],"new":[38],"multi-level":[39],"clustering":[40,64,81],"based":[41,82],"matrix":[43,83],"which":[45],"comparable":[47],"even":[49],"more":[50,75],"compact":[51],"than":[52],"Singular":[53],"Value":[54],"Decomposition":[55],"(SVD).":[56],"utilize":[58],"cluster":[60],"indicators":[61],"results":[65,73],"to":[66,85],"form":[67],"subspaces,":[69],"hence":[70],"our":[71,80,106,114],"decomposition":[72,108,119],"interpretable.":[76],"further":[78],"generalize":[79],"decompositions":[84,87],"tensor":[86,107],"useful":[90],"in":[91],"high-order":[92,125],"analysis.":[94],"also":[96],"provide":[97],"an":[98],"upper":[99],"bound":[100],"approximation":[103],"error":[104],"algorithm.":[109],"In":[110],"all":[111],"experimental":[112],"results,":[113],"methods":[115,120],"significantly":[116],"outperform":[117],"traditional":[118],"such":[121],"as":[122],"SVD":[123],"SVD.":[126]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2219073195","counts_by_year":[{"year":2012,"cited_by_count":1}],"updated_date":"2025-02-19T06:18:48.676006","created_date":"2016-06-24"}