{"id":"https://openalex.org/W4220709621","doi":"https://doi.org/10.1587/transinf.2021edp7121","title":"GPGPU Implementation of Variational Bayesian Gaussian Mixture Models","display_name":"GPGPU Implementation of Variational Bayesian Gaussian Mixture Models","publication_year":2022,"publication_date":"2022-02-28","ids":{"openalex":"https://openalex.org/W4220709621","doi":"https://doi.org/10.1587/transinf.2021edp7121"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1587/transinf.2021edp7121","pdf_url":"https://www.jstage.jst.go.jp/article/transinf/E105.D/3/E105.D_2021EDP7121/_pdf","source":{"id":"https://openalex.org/S2486202937","display_name":"IEICE Transactions on Information and Systems","issn_l":"0916-8532","issn":["0916-8532","1745-1361"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4320800604","host_organization_name":"Institute of Electronics, Information and Communication Engineers","host_organization_lineage":["https://openalex.org/P4320800604"],"host_organization_lineage_names":["Institute of Electronics, Information and Communication Engineers"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://www.jstage.jst.go.jp/article/transinf/E105.D/3/E105.D_2021EDP7121/_pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5034880304","display_name":"Hiroki Nishimoto","orcid":"https://orcid.org/0009-0008-5111-3052"},"institutions":[{"id":"https://openalex.org/I75917431","display_name":"Nara Institute of Science and Technology","ror":"https://ror.org/05bhada84","country_code":"JP","type":"education","lineage":["https://openalex.org/I75917431"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Hiroki NISHIMOTO","raw_affiliation_strings":["Nara Institute of Science and Technology"],"affiliations":[{"raw_affiliation_string":"Nara Institute of Science and Technology","institution_ids":["https://openalex.org/I75917431"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077568140","display_name":"Renyuan ZHANG","orcid":null},"institutions":[{"id":"https://openalex.org/I75917431","display_name":"Nara Institute of Science and Technology","ror":"https://ror.org/05bhada84","country_code":"JP","type":"education","lineage":["https://openalex.org/I75917431"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Renyuan ZHANG","raw_affiliation_strings":["Nara Institute of Science and Technology"],"affiliations":[{"raw_affiliation_string":"Nara Institute of Science and Technology","institution_ids":["https://openalex.org/I75917431"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5061486185","display_name":"Yasuhiko NAKASHIMA","orcid":null},"institutions":[{"id":"https://openalex.org/I75917431","display_name":"Nara Institute of Science and Technology","ror":"https://ror.org/05bhada84","country_code":"JP","type":"education","lineage":["https://openalex.org/I75917431"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yasuhiko NAKASHIMA","raw_affiliation_strings":["Nara Institute of Science and Technology"],"affiliations":[{"raw_affiliation_string":"Nara Institute of Science and Technology","institution_ids":["https://openalex.org/I75917431"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":"E105.D","issue":"3","first_page":"611","last_page":"622"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10637","display_name":"Data Clustering Techniques and Algorithms","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10637","display_name":"Data Clustering Techniques and Algorithms","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11667","display_name":"Breath Analysis Technology","score":0.9922,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.9883,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/speedup","display_name":"Speedup","score":0.7076997},{"id":"https://openalex.org/keywords/clustering-algorithms","display_name":"Clustering Algorithms","score":0.509164},{"id":"https://openalex.org/keywords/support-vector-machines-(svm)","display_name":"Support Vector Machines (SVM)","score":0.503589}],"concepts":[{"id":"https://openalex.org/C50630238","wikidata":"https://www.wikidata.org/wiki/Q971505","display_name":"General-purpose computing on graphics processing units","level":3,"score":0.8667837},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8605393},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.7218747},{"id":"https://openalex.org/C68339613","wikidata":"https://www.wikidata.org/wiki/Q1549489","display_name":"Speedup","level":2,"score":0.7076997},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.58793914},{"id":"https://openalex.org/C2778119891","wikidata":"https://www.wikidata.org/wiki/Q477690","display_name":"CUDA","level":2,"score":0.57634264},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.46307173},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.4497464},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.43995082},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.43816906},{"id":"https://openalex.org/C21442007","wikidata":"https://www.wikidata.org/wiki/Q1027879","display_name":"Graphics","level":2,"score":0.21812275},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.19519153},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.06405425},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1587/transinf.2021edp7121","pdf_url":"https://www.jstage.jst.go.jp/article/transinf/E105.D/3/E105.D_2021EDP7121/_pdf","source":{"id":"https://openalex.org/S2486202937","display_name":"IEICE Transactions on Information and Systems","issn_l":"0916-8532","issn":["0916-8532","1745-1361"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4320800604","host_organization_name":"Institute of Electronics, Information and Communication Engineers","host_organization_lineage":["https://openalex.org/P4320800604"],"host_organization_lineage_names":["Institute of Electronics, Information and Communication Engineers"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1587/transinf.2021edp7121","pdf_url":"https://www.jstage.jst.go.jp/article/transinf/E105.D/3/E105.D_2021EDP7121/_pdf","source":{"id":"https://openalex.org/S2486202937","display_name":"IEICE Transactions on Information and Systems","issn_l":"0916-8532","issn":["0916-8532","1745-1361"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4320800604","host_organization_name":"Institute of Electronics, Information and Communication Engineers","host_organization_lineage":["https://openalex.org/P4320800604"],"host_organization_lineage_names":["Institute of Electronics, Information and Communication Engineers"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.59,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W2000335122","https://openalex.org/W2026297770","https://openalex.org/W2041823554","https://openalex.org/W2051224630","https://openalex.org/W2068686165","https://openalex.org/W2138924491","https://openalex.org/W2486737114","https://openalex.org/W2621870291","https://openalex.org/W4235169531"],"related_works":["https://openalex.org/W3048701459","https://openalex.org/W2983282793","https://openalex.org/W240129890","https://openalex.org/W2389600408","https://openalex.org/W2370314112","https://openalex.org/W2364044215","https://openalex.org/W2149078538","https://openalex.org/W2080146221","https://openalex.org/W1963859303","https://openalex.org/W1912958759"],"abstract_inverted_index":{"The":[0,87,140],"efficient":[1],"implementation":[2],"strategy":[3],"for":[4,99,120],"speeding":[5],"up":[6],"high-quality":[7],"clustering":[8,27,107],"algorithms":[9],"is":[10,43,54,58,83,135,160],"developed":[11],"on":[12],"the":[13,51,56,68,101,106,121,124,127,154,164],"basis":[14],"of":[15,72,111,129,157],"general":[16],"purpose":[17],"graphic":[18],"processing":[19],"units":[20],"(GPGPUs)":[21],"in":[22,85,147,152],"this":[23],"work.":[24],"Among":[25],"various":[26],"algorithms,":[28],"a":[29],"sophisticated":[30],"Gaussian":[31],"mixture":[32],"model":[33],"(GMM)":[34],"by":[35,133,163],"estimating":[36],"parameters":[37],"through":[38],"variational":[39],"Bayesian":[40],"(VB)":[41],"mechanism":[42],"conducted":[44,162],"due":[45],"to":[46,60],"its":[47],"superior":[48],"performances.":[49],"Since":[50],"VB-GMM":[52,73,131],"methodology":[53],"computation-hungry,":[55],"GPGPU":[57,75,102,134,142],"employed":[59],"carry":[61],"out":[62],"massive":[63],"matrix-computations.":[64],"To":[65],"efficiently":[66],"migrate":[67],"conventional":[69],"CPU-oriented":[70],"schemes":[71],"onto":[74],"platforms,":[76],"an":[77],"entire":[78],"migration-flow":[79],"with":[80,115,137],"thirteen":[81],"stages":[82],"presented":[84],"detail.":[86],"CPU-GPGPU":[88],"co-operation":[89],"scheme,":[90],"execution":[91],"re-order,":[92],"and":[93,104],"memory":[94],"access":[95],"optimization":[96],"are":[97,118],"proposed":[98,141],"optimizing":[100],"utilization":[103],"maximizing":[105],"speed.":[108],"Five":[109],"types":[110],"real-world":[112],"applications":[113],"along":[114],"relevant":[116],"data-sets":[117],"introduced":[119],"cross-validation.":[122],"From":[123],"experimental":[125],"results,":[126],"feasibility":[128],"implementing":[130],"algorithm":[132],"verified":[136],"practical":[138],"benefits.":[139],"migration":[143],"achieves":[144],"192x":[145],"speedup":[146],"maximum.":[148],"Furthermore,":[149],"it":[150],"succeeded":[151],"identifying":[153],"proper":[155],"number":[156],"clusters,":[158],"which":[159],"hardly":[161],"EM-algotihm.":[165]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4220709621","counts_by_year":[],"updated_date":"2024-12-04T04:32:21.062170","created_date":"2022-04-03"}