{"id":"https://openalex.org/W2899413285","doi":"https://doi.org/10.1587/transfun.e101.a.1737","title":"Air-Writing Recognition Based on Fusion Network for Learning Spatial and Temporal Features","display_name":"Air-Writing Recognition Based on Fusion Network for Learning Spatial and Temporal Features","publication_year":2018,"publication_date":"2018-10-31","ids":{"openalex":"https://openalex.org/W2899413285","doi":"https://doi.org/10.1587/transfun.e101.a.1737","mag":"2899413285"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1587/transfun.e101.a.1737","pdf_url":null,"source":{"id":"https://openalex.org/S166990724","display_name":"IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences","issn_l":"0916-8508","issn":["0916-8508","1745-1337"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4320800604","host_organization_name":"Institute of Electronics, Information and Communication Engineers","host_organization_lineage":["https://openalex.org/P4320800604"],"host_organization_lineage_names":["Institute of Electronics, Information and Communication Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035481561","display_name":"Buntueng Yana","orcid":null},"institutions":[{"id":"https://openalex.org/I98285908","display_name":"Osaka University","ror":"https://ror.org/035t8zc32","country_code":"JP","type":"education","lineage":["https://openalex.org/I98285908"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Buntueng YANA","raw_affiliation_strings":["Graduate School of Information Science and Technology, Osaka University"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science and Technology, Osaka University","institution_ids":["https://openalex.org/I98285908"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5061693379","display_name":"Takao Onoye","orcid":"https://orcid.org/0000-0002-1894-2448"},"institutions":[{"id":"https://openalex.org/I98285908","display_name":"Osaka University","ror":"https://ror.org/035t8zc32","country_code":"JP","type":"education","lineage":["https://openalex.org/I98285908"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takao ONOYE","raw_affiliation_strings":["Graduate School of Information Science and Technology, Osaka University"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science and Technology, Osaka University","institution_ids":["https://openalex.org/I98285908"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.363,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":8,"citation_normalized_percentile":{"value":0.800105,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":"E101.A","issue":"11","first_page":"1737","last_page":"1744"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9671,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76818895},{"id":"https://openalex.org/C207347870","wikidata":"https://www.wikidata.org/wiki/Q371174","display_name":"Gesture","level":2,"score":0.6331405},{"id":"https://openalex.org/C112876837","wikidata":"https://www.wikidata.org/wiki/Q837518","display_name":"Alphabet","level":2,"score":0.6309426},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5858934},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.4798793},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.4711548},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4463453},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.44210413},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.4035221},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.31797928},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.24486807},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1587/transfun.e101.a.1737","pdf_url":null,"source":{"id":"https://openalex.org/S166990724","display_name":"IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences","issn_l":"0916-8508","issn":["0916-8508","1745-1337"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4320800604","host_organization_name":"Institute of Electronics, Information and Communication Engineers","host_organization_lineage":["https://openalex.org/P4320800604"],"host_organization_lineage_names":["Institute of Electronics, Information and Communication Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.84}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1506713607","https://openalex.org/W1531333757","https://openalex.org/W1940005424","https://openalex.org/W1974588631","https://openalex.org/W2035085138","https://openalex.org/W2051234496","https://openalex.org/W2063479716","https://openalex.org/W2065434270","https://openalex.org/W2075338093","https://openalex.org/W2140090592","https://openalex.org/W2153873029","https://openalex.org/W2166182460","https://openalex.org/W2212620197","https://openalex.org/W2327514009","https://openalex.org/W2342966107","https://openalex.org/W2343424255","https://openalex.org/W2415853414","https://openalex.org/W2512855534","https://openalex.org/W2515971806","https://openalex.org/W2552886112","https://openalex.org/W2565459059","https://openalex.org/W2587423462","https://openalex.org/W2609112450","https://openalex.org/W2621076832","https://openalex.org/W2738141461","https://openalex.org/W2766538751"],"related_works":["https://openalex.org/W577271088","https://openalex.org/W2537963312","https://openalex.org/W2537762514","https://openalex.org/W2349788282","https://openalex.org/W2164899521","https://openalex.org/W2120801881","https://openalex.org/W2066003895","https://openalex.org/W2020010749","https://openalex.org/W1982853263","https://openalex.org/W1974473538"],"abstract_inverted_index":{"A":[0],"fusion":[1,59],"framework":[2],"between":[3,105],"CNN":[4],"and":[5,20,44,66,74],"RNN":[6,82],"is":[7,38,83,98,109],"proposed":[8,24,36,58],"dedicatedly":[9],"for":[10],"air-writing":[11,16],"recognition.":[12],"By":[13],"modeling":[14],"the":[15,23,35,42,48,52,57,71,75,103],"using":[17,41],"both":[18],"spatial":[19],"temporal":[21],"features,":[22],"network":[25,37,60],"can":[26,87],"learn":[27],"more":[28],"information":[29],"than":[30],"existing":[31],"techniques.":[32],"Performance":[33],"of":[34,56,81,93],"evaluated":[39],"by":[40],"alphabet":[43,72],"numeric":[45,76],"datasets":[46],"in":[47,70],"public":[49],"database":[50],"namely":[51],"6DMG.":[53],"Average":[54],"accuracy":[55],"outperforms":[61],"other":[62],"techniques,":[63],"i.e.":[64],"99.25%":[65],"99.83%":[67],"are":[68],"observed":[69],"gesture":[73],"gesture,":[77],"respectively.":[78],"Simplified":[79],"structure":[80],"also":[84,99],"proposed,":[85],"which":[86],"attain":[88,112],"about":[89],"two":[90],"folds":[91],"speed-up":[92],"ordinary":[94],"BLSTM":[95],"network.":[96],"It":[97],"confirmed":[100],"that":[101],"only":[102],"distance":[104],"consecutive":[106],"sampling":[107],"points":[108],"enough":[110],"to":[111],"high":[113],"recognition":[114],"performance.":[115]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2899413285","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2025-01-04T18:55:34.149030","created_date":"2018-11-09"}