{"id":"https://openalex.org/W3092623075","doi":"https://doi.org/10.15439/2020f101","title":"A Framework for Time Series Preprocessing and History-based Forecasting Method Recommendation","display_name":"A Framework for Time Series Preprocessing and History-based Forecasting Method Recommendation","publication_year":2020,"publication_date":"2020-09-26","ids":{"openalex":"https://openalex.org/W3092623075","doi":"https://doi.org/10.15439/2020f101","mag":"3092623075"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.15439/2020f101","pdf_url":"https://annals-csis.org/proceedings/2020/drp/pdf/101.pdf","source":{"id":"https://openalex.org/S4220651875","display_name":"Annals of Computer Science and Information Systems","issn_l":"2300-5963","issn":["2300-5963"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310317484","host_organization_name":"Polskie Towarzystwo Informatyczne","host_organization_lineage":["https://openalex.org/P4310317484"],"host_organization_lineage_names":["Polskie Towarzystwo Informatyczne"],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"diamond","oa_url":"https://annals-csis.org/proceedings/2020/drp/pdf/101.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040656544","display_name":"Marwin Z\u00fcfle","orcid":"https://orcid.org/0000-0002-6620-9152"},"institutions":[{"id":"https://openalex.org/I25974101","display_name":"University of W\u00fcrzburg","ror":"https://ror.org/00fbnyb24","country_code":"DE","type":"funder","lineage":["https://openalex.org/I25974101"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Marwin Z\u00fcfle","raw_affiliation_strings":["University of Wuerzburg, Germany"],"affiliations":[{"raw_affiliation_string":"University of Wuerzburg, Germany","institution_ids":["https://openalex.org/I25974101"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5013790674","display_name":"Samuel Kounev","orcid":"https://orcid.org/0000-0001-9742-2063"},"institutions":[{"id":"https://openalex.org/I25974101","display_name":"University of W\u00fcrzburg","ror":"https://ror.org/00fbnyb24","country_code":"DE","type":"funder","lineage":["https://openalex.org/I25974101"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Samuel Kounev","raw_affiliation_strings":["University of Wuerzburg, Germany"],"affiliations":[{"raw_affiliation_string":"University of Wuerzburg, Germany","institution_ids":["https://openalex.org/I25974101"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":0,"currency":"USD","value_usd":0},"apc_paid":null,"fwci":0.967,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":4,"citation_normalized_percentile":{"value":0.705036,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":79},"biblio":{"volume":"21","issue":null,"first_page":"141","last_page":"144"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76239645},{"id":"https://openalex.org/C34736171","wikidata":"https://www.wikidata.org/wiki/Q918333","display_name":"Preprocessor","level":2,"score":0.7211351},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.6666998},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.6652528},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.46767554},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3886602},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33307725},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.15439/2020f101","pdf_url":"https://annals-csis.org/proceedings/2020/drp/pdf/101.pdf","source":{"id":"https://openalex.org/S4220651875","display_name":"Annals of Computer Science and Information Systems","issn_l":"2300-5963","issn":["2300-5963"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310317484","host_organization_name":"Polskie Towarzystwo Informatyczne","host_organization_lineage":["https://openalex.org/P4310317484"],"host_organization_lineage_names":["Polskie Towarzystwo Informatyczne"],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.15439/2020f101","pdf_url":"https://annals-csis.org/proceedings/2020/drp/pdf/101.pdf","source":{"id":"https://openalex.org/S4220651875","display_name":"Annals of Computer Science and Information Systems","issn_l":"2300-5963","issn":["2300-5963"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310317484","host_organization_name":"Polskie Towarzystwo Informatyczne","host_organization_lineage":["https://openalex.org/P4310317484"],"host_organization_lineage_names":["Polskie Towarzystwo Informatyczne"],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.64}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1984255960","https://openalex.org/W1986528915","https://openalex.org/W1989989024","https://openalex.org/W1993387039","https://openalex.org/W2008406084","https://openalex.org/W2091860924","https://openalex.org/W2117014758","https://openalex.org/W2151554678","https://openalex.org/W2190244837","https://openalex.org/W2295598076","https://openalex.org/W2768931686","https://openalex.org/W2911964244","https://openalex.org/W2972651565","https://openalex.org/W3031471216","https://openalex.org/W3092048541","https://openalex.org/W3102476541","https://openalex.org/W3123547113","https://openalex.org/W4239414618","https://openalex.org/W4250639944","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4306674287","https://openalex.org/W4224009465","https://openalex.org/W2961085424","https://openalex.org/W2953976309","https://openalex.org/W2382928216","https://openalex.org/W2357235357","https://openalex.org/W2354329565","https://openalex.org/W2150798635","https://openalex.org/W2080650820","https://openalex.org/W1964982224"],"abstract_inverted_index":{"The":[0],"complexity":[1],"of":[2,6,36,93,110,128,138,164],"managing":[3],"the":[4,27,68,85,91,102,126,129,135,139,149,167],"capacities":[5],"large":[7],"IT":[8],"infrastructures":[9],"is":[10,122,132,146],"constantly":[11],"increasing":[12],"as":[13],"more":[14],"network":[15,60],"devices":[16],"are":[17,71,82],"connected.This":[18],"task":[19],"can":[20],"no":[21],"longer":[22],"be":[23,30,40],"performed":[24],"manually,":[25],"so":[26],"system":[28],"must":[29,39],"monitored":[31],"at":[32],"runtime":[33],"and":[34,77,153],"estimations":[35],"future":[37],"conditions":[38],"made":[41],"automatically.However,":[42],"since":[43],"using":[44,64,134],"a":[45,55,97],"single":[46],"forecasting":[47,58,66,94,105,130,156],"method":[48,106],"typically":[49],"performs":[50],"poorly,":[51],"this":[52,108,124],"paper":[53],"presents":[54],"framework":[56,145],"for":[57,100,112],"univariate":[59,86],"device":[61],"workload":[62],"traces":[63],"multiple":[65],"methods.First,":[67],"time":[69,87,114,141],"series":[70,115,142],"preprocessed":[72],"by":[73],"imputing":[74],"missing":[75],"data":[76,137,170],"removing":[78],"anomalies.Then,":[79],"different":[80],"features":[81],"derived":[83],"from":[84,107],"series,":[88],"depending":[89],"on":[90,118,166],"type":[92],"method.In":[95],"addition,":[96],"recommendation":[98],"approach":[99],"selecting":[101],"most":[103],"suitable":[104],"set":[109],"algorithms":[111],"each":[113],"based":[116],"only":[117],"its":[119],"historical":[120,136],"values":[121],"proposed.For":[123],"purpose,":[125],"performance":[127],"methods":[131],"approximated":[133],"respective":[140],"under":[143],"consideration.The":[144],"used":[147],"in":[148],"FedCSIS":[150],"2020":[151],"Challenge":[152],"shows":[154],"good":[155],"quality":[157],"with":[158],"an":[159],"average":[160],"R":[161],"2":[162],"score":[163],"0.2575":[165],"small":[168],"test":[169],"set.":[171]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3092623075","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2020,"cited_by_count":1}],"updated_date":"2025-02-16T10:48:43.817670","created_date":"2020-10-15"}