{"id":"https://openalex.org/W2485625880","doi":"https://doi.org/10.1504/ijcsm.2016.076430","title":"Kernel methods for transfer learning to avoid negative transfer","display_name":"Kernel methods for transfer learning to avoid negative transfer","publication_year":2016,"publication_date":"2016-01-01","ids":{"openalex":"https://openalex.org/W2485625880","doi":"https://doi.org/10.1504/ijcsm.2016.076430","mag":"2485625880"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1504/ijcsm.2016.076430","pdf_url":null,"source":{"id":"https://openalex.org/S84141356","display_name":"International Journal of Computing Science and Mathematics","issn_l":"1752-5055","issn":["1752-5055","1752-5063"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310317825","host_organization_name":"Inderscience Publishers","host_organization_lineage":["https://openalex.org/P4310317825"],"host_organization_lineage_names":["Inderscience Publishers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5012354990","display_name":"Hao Shao","orcid":"https://orcid.org/0000-0003-2687-7233"},"institutions":[{"id":"https://openalex.org/I905225518","display_name":"Shanghai University of International Business and Economics","ror":"https://ror.org/031t68441","country_code":"CN","type":"education","lineage":["https://openalex.org/I905225518"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Hao Shao","raw_affiliation_strings":["Shanghai University of International Business and Economics, Shanghai, 200336, China"],"affiliations":[{"raw_affiliation_string":"Shanghai University of International Business and Economics, Shanghai, 200336, China","institution_ids":["https://openalex.org/I905225518"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5012354990"],"corresponding_institution_ids":["https://openalex.org/I905225518"],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":"7","issue":"2","first_page":"190","last_page":"190"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9725,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.7595966},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.61653185},{"id":"https://openalex.org/keywords/inductive-transfer","display_name":"Inductive transfer","score":0.48451465}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82658637},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.7595966},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.66786414},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.61653185},{"id":"https://openalex.org/C2776175482","wikidata":"https://www.wikidata.org/wiki/Q1195816","display_name":"Transfer (computing)","level":2,"score":0.5838919},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.56720537},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5458345},{"id":"https://openalex.org/C77075516","wikidata":"https://www.wikidata.org/wiki/Q6027324","display_name":"Inductive transfer","level":5,"score":0.48451465},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.430138},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.1781576},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09998},{"id":"https://openalex.org/C188888258","wikidata":"https://www.wikidata.org/wiki/Q7353390","display_name":"Robot learning","level":4,"score":0.0881761},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C19966478","wikidata":"https://www.wikidata.org/wiki/Q4810574","display_name":"Mobile robot","level":3,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1504/ijcsm.2016.076430","pdf_url":null,"source":{"id":"https://openalex.org/S84141356","display_name":"International Journal of Computing Science and Mathematics","issn_l":"1752-5055","issn":["1752-5055","1752-5063"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310317825","host_organization_name":"Inderscience Publishers","host_organization_lineage":["https://openalex.org/P4310317825"],"host_organization_lineage_names":["Inderscience Publishers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1569436870","https://openalex.org/W1587567107","https://openalex.org/W1603035390","https://openalex.org/W164954474","https://openalex.org/W1864487875","https://openalex.org/W1983661866","https://openalex.org/W2036043322","https://openalex.org/W2108561737","https://openalex.org/W2134982367","https://openalex.org/W2143104527","https://openalex.org/W2165698076","https://openalex.org/W3035219538","https://openalex.org/W32508012","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4387770285","https://openalex.org/W4312257007","https://openalex.org/W4292367956","https://openalex.org/W4213035857","https://openalex.org/W3158006613","https://openalex.org/W3016888008","https://openalex.org/W2745420784","https://openalex.org/W2165698076","https://openalex.org/W2158618075","https://openalex.org/W206237318"],"abstract_inverted_index":{"In":[0,28,97],"the":[1,6,29,43,48,86,111,115,140,148],"big":[2],"data":[3],"era,":[4],"with":[5,25],"devolvement":[7],"of":[8,14,34,69,142,147],"information":[9,33],"storage":[10],"and":[11,20,23,65,114],"processing":[12],"capability":[13],"computers,":[15],"new":[16,50],"tasks":[17,36],"become":[18],"more":[19,21],"complex":[22],"also":[24],"higher":[26],"requirements.":[27],"other":[30],"side,":[31],"out-of-date":[32],"old":[35],"are":[37,55,101],"abounded":[38],"at":[39,103],"will.":[40],"Due":[41],"to":[42,57,92,108],"considerable":[44],"cost":[45],"for":[46,130],"classifying":[47],"emerged":[49],"tasks,":[51],"transfer":[52,83,88,134],"learning":[53,84,135],"techniques":[54],"developed":[56],"extract":[58],"useful":[59],"knowledge":[60],"from":[61],"existing":[62],"similar":[63],"datasets,":[64],"a":[66,105],"large":[67],"number":[68],"research":[70],"works":[71],"have":[72],"been":[73],"published":[74],"in":[75,82,133,145,151],"recent":[76],"years.":[77],"However,":[78],"an":[79],"open":[80],"problem":[81],"is":[85,124],"negative":[87],"which":[89,126],"happens":[90],"due":[91],"different":[93],"distributions":[94],"among":[95],"tasks.":[96],"this":[98],"manuscript,":[99],"we":[100],"targeting":[102],"proposing":[104],"kernel":[106],"method":[107],"evaluate":[109],"both":[110],"task":[112],"relatedness":[113],"instance":[116],"similarities.":[117],"The":[118],"minimum":[119],"description":[120],"length":[121],"principle":[122],"(MDLP)":[123],"adopted":[125],"was":[127],"proved":[128],"effective":[129],"evaluating":[131],"models":[132],"scenario.":[136],"Extensive":[137],"experiments":[138],"show":[139],"effectiveness":[141],"our":[143],"algorithm":[144],"terms":[146],"classification":[149],"accuracy":[150],"real":[152],"datasets.":[153]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2485625880","counts_by_year":[],"updated_date":"2025-01-21T06:28:03.351394","created_date":"2016-08-23"}