{"id":"https://openalex.org/W3207152755","doi":"https://doi.org/10.14428/esann/2021.es2021-57","title":"Data-Efficient Training of High-Resolution Images in Medical Domain","display_name":"Data-Efficient Training of High-Resolution Images in Medical Domain","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3207152755","doi":"https://doi.org/10.14428/esann/2021.es2021-57","mag":"3207152755"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.14428/esann/2021.es2021-57","pdf_url":null,"source":{"id":"https://openalex.org/S4306509709","display_name":"ESANN 2021 proceedings","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://doi.org/10.14428/esann/2021.es2021-57","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085697832","display_name":"Shruti Kunde","orcid":"https://orcid.org/0000-0002-4708-0496"},"institutions":[{"id":"https://openalex.org/I55215948","display_name":"Tata Consultancy Services (India)","ror":"https://ror.org/01b9n8m42","country_code":"IN","type":"company","lineage":["https://openalex.org/I4210086519","https://openalex.org/I55215948"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Shruti Kunde","raw_affiliation_strings":["TCS Research, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India","institution_ids":["https://openalex.org/I55215948"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102352380","display_name":"Amey Pandit","orcid":null},"institutions":[{"id":"https://openalex.org/I55215948","display_name":"Tata Consultancy Services (India)","ror":"https://ror.org/01b9n8m42","country_code":"IN","type":"company","lineage":["https://openalex.org/I4210086519","https://openalex.org/I55215948"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Amey Pandit","raw_affiliation_strings":["TCS Research, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India","institution_ids":["https://openalex.org/I55215948"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065114918","display_name":"Kushagra Mahajan","orcid":null},"institutions":[{"id":"https://openalex.org/I55215948","display_name":"Tata Consultancy Services (India)","ror":"https://ror.org/01b9n8m42","country_code":"IN","type":"company","lineage":["https://openalex.org/I4210086519","https://openalex.org/I55215948"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Kushagra Mahajan","raw_affiliation_strings":["TCS Research, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India","institution_ids":["https://openalex.org/I55215948"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101897117","display_name":"Monika Sharma","orcid":"https://orcid.org/0000-0002-7346-2711"},"institutions":[{"id":"https://openalex.org/I55215948","display_name":"Tata Consultancy Services (India)","ror":"https://ror.org/01b9n8m42","country_code":"IN","type":"company","lineage":["https://openalex.org/I4210086519","https://openalex.org/I55215948"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Monika Sharma","raw_affiliation_strings":["TCS Research, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India","institution_ids":["https://openalex.org/I55215948"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086400313","display_name":"Rekha Singhal","orcid":"https://orcid.org/0000-0002-3712-1784"},"institutions":[{"id":"https://openalex.org/I55215948","display_name":"Tata Consultancy Services (India)","ror":"https://ror.org/01b9n8m42","country_code":"IN","type":"company","lineage":["https://openalex.org/I4210086519","https://openalex.org/I55215948"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Rekha Singhal","raw_affiliation_strings":["TCS Research, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India","institution_ids":["https://openalex.org/I55215948"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5071894271","display_name":"Lovekesh Vig","orcid":"https://orcid.org/0000-0001-9834-3308"},"institutions":[{"id":"https://openalex.org/I55215948","display_name":"Tata Consultancy Services (India)","ror":"https://ror.org/01b9n8m42","country_code":"IN","type":"company","lineage":["https://openalex.org/I4210086519","https://openalex.org/I55215948"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Lovekesh Vig","raw_affiliation_strings":["TCS Research, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India","institution_ids":["https://openalex.org/I55215948"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":"171","last_page":"176"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/workaround","display_name":"Workaround","score":0.737958}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8446771},{"id":"https://openalex.org/C194541083","wikidata":"https://www.wikidata.org/wiki/Q457174","display_name":"Workaround","level":2,"score":0.737958},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.6216798},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.51498586},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.4764098},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.4751225},{"id":"https://openalex.org/C205372480","wikidata":"https://www.wikidata.org/wiki/Q210521","display_name":"Image resolution","level":2,"score":0.44561318},{"id":"https://openalex.org/C31601959","wikidata":"https://www.wikidata.org/wiki/Q931309","display_name":"Medical imaging","level":2,"score":0.41961008},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.41766995},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.35955036},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.34693336},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.14428/esann/2021.es2021-57","pdf_url":null,"source":{"id":"https://openalex.org/S4306509709","display_name":"ESANN 2021 proceedings","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.14428/esann/2021.es2021-57","pdf_url":null,"source":{"id":"https://openalex.org/S4306509709","display_name":"ESANN 2021 proceedings","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W2094058787","https://openalex.org/W2519210008","https://openalex.org/W2798122215","https://openalex.org/W2890139949","https://openalex.org/W2961199351","https://openalex.org/W2972291421","https://openalex.org/W2979858475","https://openalex.org/W3002669799","https://openalex.org/W3042766772","https://openalex.org/W3109680477","https://openalex.org/W4300485340","https://openalex.org/W4301239768"],"related_works":["https://openalex.org/W4390846322","https://openalex.org/W4381612620","https://openalex.org/W3171371563","https://openalex.org/W3133954817","https://openalex.org/W3024479225","https://openalex.org/W3003847115","https://openalex.org/W2998499456","https://openalex.org/W2995680918","https://openalex.org/W2950380533","https://openalex.org/W2893207040"],"abstract_inverted_index":{"The":[0],"ability":[1],"of":[2,90,95,123,184,212,220],"Graphical":[3],"Processor":[4],"Units":[5],"(GPUs)":[6],"to":[7,16,42,64,106,205,216],"quickly":[8],"train":[9],"dataand":[10],"compute-intensive":[11],"deep":[12,37],"networks":[13,38],"has":[14],"led":[15],"rapid":[17],"advancements":[18],"across":[19,160,176],"diverse":[20],"domains":[21,111],"such":[22],"as":[23],"robotics,":[24],"medical":[25,113,231],"imaging":[26,232],"and":[27,69,98,119,151,171,209,237],"autonomous":[28],"driving.However,":[29],"memory":[30,182],"constraints":[31,183],"with":[32,82,127,148,156],"GPU-based":[33],"training":[34,71,136,146,165],"for":[35,110,196],"memory-intensive":[36],"have":[39],"forced":[40],"researchers":[41],"adopt":[43],"various":[44],"workarounds:":[45],"1)":[46,88],"resize":[47],"the":[48,67,169,181,218],"input":[49,53],"image,":[50],"2)":[51,93],"divide":[52],"image":[54,198,221],"into":[55,73],"smaller":[56,60],"patches,":[57],"or":[58],"use":[59],"batch-sizes":[61],"in":[62,130,191],"order":[63],"fit":[65],"both":[66],"model":[68,174],"batch":[70,101,154],"data":[72,116,170],"GPU":[74,164,186],"memory.While":[75],"these":[76],"alternatives":[77],"perform":[78],"well":[79],"when":[80],"dealing":[81],"natural":[83],"images,":[84],"they":[85],"suffer":[86],"from":[87,201],"loss":[89,94],"highresolution":[91],"information,":[92],"global":[96],"context":[97],"3)":[99],"sub-optimal":[100],"sizes.Such":[102],"issues":[103],"will":[104],"likely":[105],"become":[107],"more":[108,140],"pressing":[109],"like":[112],"imaging,":[114],"where":[115],"is":[117],"scarce":[118],"images":[120,150,213],"are":[121,194],"often":[122],"very":[124],"high":[125],"resolution":[126],"subtle":[128],"features.Therefore,":[129],"this":[131],"paper,":[132],"we":[133],"demonstrate":[134],"that":[135],"can":[137],"be":[138],"made":[139],"data-efficient":[141],"by":[142],"using":[143],"a":[144,189],"distributed":[145,159,163],"setup":[147],"high-resolution":[149],"larger":[152],"effective":[153],"sizes,":[155],"batches":[157],"being":[158],"multiple":[161],"nodes.The":[162],"framework,":[166],"which":[167,192],"partitions":[168],"only":[172],"shares":[173],"parameters":[175],"different":[177,197,210],"GPUs,":[178],"gets":[179],"around":[180],"single":[185],"training.We":[187],"conduct":[188],"study":[190],"experiments":[193],"performed":[195],"resolutions":[199,222],"(ranging":[200],"112":[202,204],"\u00d7":[203,207],"1024":[206],"1024)":[208],"number":[211],"per":[214],"class":[215],"determine":[217],"effect":[219],"on":[223,229],"network":[224],"performance.We":[225],"illustrate":[226],"our":[227],"findings":[228],"two":[230],"datasets":[233],"namely,":[234],"SD-198":[235],"skin-lesion":[236],"NIH":[238],"Chest":[239],"X-rays.":[240]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3207152755","counts_by_year":[],"updated_date":"2024-12-07T05:56:43.266031","created_date":"2021-10-25"}