{"id":"https://openalex.org/W4387745148","doi":"https://doi.org/10.1371/journal.pcbi.1011535","title":"Combining the dynamic model and deep neural networks to identify the intensity of interventions during COVID-19 pandemic","display_name":"Combining the dynamic model and deep neural networks to identify the intensity of interventions during COVID-19 pandemic","publication_year":2023,"publication_date":"2023-10-18","ids":{"openalex":"https://openalex.org/W4387745148","doi":"https://doi.org/10.1371/journal.pcbi.1011535","pmid":"https://pubmed.ncbi.nlm.nih.gov/37851640"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1371/journal.pcbi.1011535","pdf_url":"https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011535&type=printable","source":{"id":"https://openalex.org/S86033158","display_name":"PLoS Computational Biology","issn_l":"1553-734X","issn":["1553-734X","1553-7358"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310316756","host_organization_name":"International Society for Computational Biology","host_organization_lineage":["https://openalex.org/P4310316756"],"host_organization_lineage_names":["International Society for Computational Biology"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011535&type=printable","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058015365","display_name":"Mengqi He","orcid":"https://orcid.org/0000-0003-1528-5996"},"institutions":[{"id":"https://openalex.org/I88830068","display_name":"Shaanxi Normal University","ror":"https://ror.org/0170z8493","country_code":"CN","type":"funder","lineage":["https://openalex.org/I88830068"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Mengqi He","raw_affiliation_strings":["School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China","institution_ids":["https://openalex.org/I88830068"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041520845","display_name":"Sanyi Tang","orcid":"https://orcid.org/0000-0002-3324-746X"},"institutions":[{"id":"https://openalex.org/I88830068","display_name":"Shaanxi Normal University","ror":"https://ror.org/0170z8493","country_code":"CN","type":"funder","lineage":["https://openalex.org/I88830068"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Sanyi Tang","raw_affiliation_strings":["School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China","institution_ids":["https://openalex.org/I88830068"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5022540617","display_name":"Yanni Xiao","orcid":"https://orcid.org/0000-0003-0432-7628"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Yanni Xiao","raw_affiliation_strings":["School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5058015365","https://openalex.org/A5041520845","https://openalex.org/A5022540617"],"corresponding_institution_ids":["https://openalex.org/I88830068","https://openalex.org/I88830068","https://openalex.org/I87445476"],"apc_list":{"value":2655,"currency":"USD","value_usd":2655},"apc_paid":{"value":2655,"currency":"USD","value_usd":2655},"fwci":3.393,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":12,"citation_normalized_percentile":{"value":0.723947,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"19","issue":"10","first_page":"e1011535","last_page":"e1011535"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10410","display_name":"COVID-19 epidemiological studies","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2611","display_name":"Modeling and Simulation"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10410","display_name":"COVID-19 epidemiological studies","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2611","display_name":"Modeling and Simulation"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13283","display_name":"Mental Health Research Topics","score":0.9404,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10482","display_name":"Mathematical and Theoretical Epidemiology and Ecology Models","score":0.9349,"subfield":{"id":"https://openalex.org/subfields/2739","display_name":"Public Health, Environmental and Occupational Health"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pandemic","display_name":"Pandemic","score":0.5733215},{"id":"https://openalex.org/keywords/contact-tracing","display_name":"Contact tracing","score":0.4858989},{"id":"https://openalex.org/keywords/isolation","display_name":"Isolation","score":0.43853065}],"concepts":[{"id":"https://openalex.org/C2781402358","wikidata":"https://www.wikidata.org/wiki/Q182899","display_name":"Quarantine","level":2,"score":0.71046704},{"id":"https://openalex.org/C89623803","wikidata":"https://www.wikidata.org/wiki/Q12184","display_name":"Pandemic","level":5,"score":0.5733215},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5695569},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5266813},{"id":"https://openalex.org/C27415008","wikidata":"https://www.wikidata.org/wiki/Q7256382","display_name":"Psychological intervention","level":2,"score":0.5045265},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4962998},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.49333778},{"id":"https://openalex.org/C113162765","wikidata":"https://www.wikidata.org/wiki/Q1128437","display_name":"Contact tracing","level":5,"score":0.4858989},{"id":"https://openalex.org/C761482","wikidata":"https://www.wikidata.org/wiki/Q118093","display_name":"Transmission (telecommunications)","level":2,"score":0.47865593},{"id":"https://openalex.org/C2775941552","wikidata":"https://www.wikidata.org/wiki/Q25212305","display_name":"Isolation (microbiology)","level":2,"score":0.43853065},{"id":"https://openalex.org/C2780665704","wikidata":"https://www.wikidata.org/wiki/Q959298","display_name":"Intervention (counseling)","level":2,"score":0.42632908},{"id":"https://openalex.org/C3008058167","wikidata":"https://www.wikidata.org/wiki/Q84263196","display_name":"Coronavirus disease 2019 (COVID-19)","level":4,"score":0.3964104},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38460693},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.32471955},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.20141748},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.14042047},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.12383482},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.11861226},{"id":"https://openalex.org/C524204448","wikidata":"https://www.wikidata.org/wiki/Q788926","display_name":"Infectious disease (medical specialty)","level":3,"score":0.11484122},{"id":"https://openalex.org/C2779134260","wikidata":"https://www.wikidata.org/wiki/Q12136","display_name":"Disease","level":2,"score":0.11145392},{"id":"https://openalex.org/C60644358","wikidata":"https://www.wikidata.org/wiki/Q128570","display_name":"Bioinformatics","level":1,"score":0.09283674},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0},{"id":"https://openalex.org/C118552586","wikidata":"https://www.wikidata.org/wiki/Q7867","display_name":"Psychiatry","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D000086382","descriptor_name":"COVID-19","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000086382","descriptor_name":"COVID-19","qualifier_ui":"Q000517","qualifier_name":"prevention & control","is_major_topic":false},{"descriptor_ui":"D000086382","descriptor_name":"COVID-19","qualifier_ui":"Q000453","qualifier_name":"epidemiology","is_major_topic":false},{"descriptor_ui":"D016358","descriptor_name":"Contact Tracing","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D058873","descriptor_name":"Pandemics","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D058873","descriptor_name":"Pandemics","qualifier_ui":"Q000517","qualifier_name":"prevention & control","is_major_topic":false},{"descriptor_ui":"D011790","descriptor_name":"Quarantine","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000086402","descriptor_name":"SARS-CoV-2","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1371/journal.pcbi.1011535","pdf_url":"https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011535&type=printable","source":{"id":"https://openalex.org/S86033158","display_name":"PLoS Computational Biology","issn_l":"1553-734X","issn":["1553-734X","1553-7358"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310316756","host_organization_name":"International Society for Computational Biology","host_organization_lineage":["https://openalex.org/P4310316756"],"host_organization_lineage_names":["International Society for Computational Biology"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584194","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/37851640","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1371/journal.pcbi.1011535","pdf_url":"https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011535&type=printable","source":{"id":"https://openalex.org/S86033158","display_name":"PLoS Computational Biology","issn_l":"1553-734X","issn":["1553-734X","1553-7358"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310316756","host_organization_name":"International Society for Computational Biology","host_organization_lineage":["https://openalex.org/P4310316756"],"host_organization_lineage_names":["International Society for Computational Biology"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/3","display_name":"Good health and well-being","score":0.87}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"12031010"},{"funder":"https://openalex.org/F4320322529","funder_display_name":"Shaanxi Normal University","award_id":"Excellent Graduate Training Program (LHRCTS23055)"},{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":"2022YFA1003704"}],"datasets":[],"versions":[],"referenced_works_count":45,"referenced_works":["https://openalex.org/W2060852353","https://openalex.org/W2148301044","https://openalex.org/W2158581396","https://openalex.org/W2194775991","https://openalex.org/W2899283552","https://openalex.org/W2977117446","https://openalex.org/W3006028839","https://openalex.org/W3007580879","https://openalex.org/W3012012492","https://openalex.org/W3014009018","https://openalex.org/W3022125993","https://openalex.org/W3022210384","https://openalex.org/W3032971139","https://openalex.org/W3043442870","https://openalex.org/W3047132168","https://openalex.org/W3094517763","https://openalex.org/W3113721704","https://openalex.org/W3118792136","https://openalex.org/W3119645124","https://openalex.org/W3128782210","https://openalex.org/W3132732596","https://openalex.org/W4213109153","https://openalex.org/W4220995663","https://openalex.org/W4221109590","https://openalex.org/W4224301703","https://openalex.org/W4224942284","https://openalex.org/W4225712666","https://openalex.org/W4226293511","https://openalex.org/W4226432920","https://openalex.org/W4280493743","https://openalex.org/W4280636474","https://openalex.org/W4281795288","https://openalex.org/W4283069694","https://openalex.org/W4283367665","https://openalex.org/W4293247424","https://openalex.org/W4294958302","https://openalex.org/W4306759113","https://openalex.org/W4309277550","https://openalex.org/W4317382684","https://openalex.org/W4324306008","https://openalex.org/W4327601546","https://openalex.org/W4367842060","https://openalex.org/W4376872076","https://openalex.org/W4379536935","https://openalex.org/W4380300725"],"related_works":["https://openalex.org/W4365518063","https://openalex.org/W4292415694","https://openalex.org/W4285803075","https://openalex.org/W4214949929","https://openalex.org/W3164566413","https://openalex.org/W3143630061","https://openalex.org/W3124824851","https://openalex.org/W3100470436","https://openalex.org/W3084704945","https://openalex.org/W3080908774"],"abstract_inverted_index":{"During":[0],"the":[1,21,26,42,48,57,83,95,101,108,113,127,141,149,153,160,171,180,193,217,229,235,238,241,249,252,257,262,269],"COVID-19":[2,202],"pandemic,":[3],"control":[4,272],"measures,":[5],"especially":[6],"massive":[7],"contact":[8,28],"tracing":[9],"following":[10],"prompt":[11],"quarantine":[12,31],"and":[13,24,30,33,72,120,124,133,168,211,224,234],"isolation,":[14],"play":[15],"an":[16],"important":[17],"role":[18],"in":[19,87,100,117,131,208,220,248,261,268,275],"mitigating":[20],"disease":[22],"spread,":[23],"quantifying":[25],"dynamic":[27],"rate":[29,32,85,176],"estimate":[34],"their":[35],"impacts":[36],"remain":[37],"challenging.":[38],"To":[39],"precisely":[40],"quantify":[41],"intensity":[43,270],"of":[44,50,97,103,145,155,231,237,251,256,271],"interventions,":[45],"we":[46],"develop":[47],"mechanism":[49],"physics-informed":[51],"neural":[52,60,92],"network":[53,61],"(PINN)":[54],"to":[55,157],"propose":[56],"extended":[58],"transmission-dynamics-informed":[59],"(TDINN)":[62],"algorithm":[63,77,110,196],"by":[64,165,184,201],"combining":[65],"scattered":[66],"observational":[67],"data":[68,116,204],"with":[69,135,205],"deep":[70,185],"learning":[71,186],"epidemic":[73,98,115,128,172,203],"models.":[74],"The":[75,174],"TDINN":[76,166,195],"can":[78,111],"not":[79],"only":[80],"avoid":[81],"assuming":[82],"specific":[84],"functions":[86,156,177],"advance":[88],"but":[89],"also":[90,198],"make":[91],"networks":[93],"follow":[94],"rules":[96],"systems":[99],"process":[102],"learning.":[104],"We":[105,139,215],"show":[106,243],"that":[107,244],"proposed":[109,194],"fit":[112],"multi-source":[114],"Xi'an,":[118],"Guangzhou":[119],"Yangzhou":[121],"cities":[122],"well,":[123],"moreover":[125],"reconstruct":[126],"development":[129],"trend":[130],"Hainan":[132],"Xinjiang":[134],"incomplete":[136],"reported":[137],"data.":[138],"inferred":[140,183,258],"temporal":[142,253],"evolution":[143,254],"patterns":[144],"contact/quarantine":[146,161,222,259],"rates,":[147,223],"selected":[148,175],"best":[150],"combination":[151],"from":[152],"family":[154],"accurately":[158],"simulate":[159],"time":[162,181],"series":[163,182],"learned":[164],"algorithm,":[167],"consequently":[169],"reconstructed":[170],"process.":[173],"based":[178],"on":[179],"have":[187],"epidemiologically":[188],"reasonable":[189],"meanings.":[190],"In":[191],"addition,":[192],"has":[197],"been":[199],"verified":[200],"multiple":[206],"waves":[207],"Liaoning":[209],"province":[210],"shows":[212],"good":[213],"performance.":[214],"find":[216],"significant":[218],"fluctuations":[219],"estimated":[221],"a":[225],"feedback":[226],"loop":[227],"between":[228],"strengthening/relaxation":[230],"intervention":[232],"strategies":[233,273],"recurrence":[236],"outbreaks.":[239],"Moreover,":[240],"findings":[242],"there":[245],"is":[246],"diversity":[247],"shape":[250],"curves":[255],"rates":[260],"considered":[263],"regions,":[264],"which":[265],"indicates":[266],"variation":[267],"adopted":[274],"various":[276],"regions.":[277]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387745148","counts_by_year":[{"year":2025,"cited_by_count":6},{"year":2024,"cited_by_count":6}],"updated_date":"2025-03-25T07:07:15.104018","created_date":"2023-10-19"}