{"id":"https://openalex.org/W3046022822","doi":"https://doi.org/10.1287/opre.2022.2363","title":"Distributionally Robust Losses for Latent Covariate Mixtures","display_name":"Distributionally Robust Losses for Latent Covariate Mixtures","publication_year":2022,"publication_date":"2022-09-02","ids":{"openalex":"https://openalex.org/W3046022822","doi":"https://doi.org/10.1287/opre.2022.2363","mag":"3046022822"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1287/opre.2022.2363","pdf_url":null,"source":{"id":"https://openalex.org/S125775545","display_name":"Operations Research","issn_l":"0030-364X","issn":["0030-364X","1526-5463"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315699","host_organization_name":"Institute for Operations Research and the Management Sciences","host_organization_lineage":["https://openalex.org/P4310315699"],"host_organization_lineage_names":["Institute for Operations Research and the Management Sciences"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2007.13982","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061331093","display_name":"John C. Duchi","orcid":"https://orcid.org/0000-0003-0045-7185"},"institutions":[{"id":"https://openalex.org/I97018004","display_name":"Stanford University","ror":"https://ror.org/00f54p054","country_code":"US","type":"funder","lineage":["https://openalex.org/I97018004"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"John Duchi","raw_affiliation_strings":["Departments of Electrical Engineering and Statistics, Stanford University, Stanford, California 94305;"],"affiliations":[{"raw_affiliation_string":"Departments of Electrical Engineering and Statistics, Stanford University, Stanford, California 94305;","institution_ids":["https://openalex.org/I97018004"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015518638","display_name":"Tatsunori Hashimoto","orcid":"https://orcid.org/0000-0003-0521-5855"},"institutions":[{"id":"https://openalex.org/I97018004","display_name":"Stanford University","ror":"https://ror.org/00f54p054","country_code":"US","type":"funder","lineage":["https://openalex.org/I97018004"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tatsunori Hashimoto","raw_affiliation_strings":["Department of Computer Science, Stanford University, Stanford, California 94305;"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Stanford University, Stanford, California 94305;","institution_ids":["https://openalex.org/I97018004"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5008595840","display_name":"Hongseok Namkoong","orcid":"https://orcid.org/0000-0002-5708-4044"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hongseok Namkoong","raw_affiliation_strings":["Decision, Risk, and Operations Division, Columbia Business School, New York, New York 10027"],"affiliations":[{"raw_affiliation_string":"Decision, Risk, and Operations Division, Columbia Business School, New York, New York 10027","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.649,"has_fulltext":false,"cited_by_count":30,"citation_normalized_percentile":{"value":0.832879,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"71","issue":"2","first_page":"649","last_page":"664"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11413","display_name":"Risk and Portfolio Optimization","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11413","display_name":"Risk and Portfolio Optimization","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.996,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12011","display_name":"Insurance, Mortality, Demography, Risk Management","score":0.9733,"subfield":{"id":"https://openalex.org/subfields/3317","display_name":"Demography"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robust-optimization","display_name":"Robust Optimization","score":0.4106411}],"concepts":[{"id":"https://openalex.org/C119043178","wikidata":"https://www.wikidata.org/wiki/Q320723","display_name":"Covariate","level":2,"score":0.7557465},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62706494},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5405111},{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.48910338},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4851404},{"id":"https://openalex.org/C102366305","wikidata":"https://www.wikidata.org/wiki/Q1097688","display_name":"Nonparametric statistics","level":2,"score":0.47742403},{"id":"https://openalex.org/C193254401","wikidata":"https://www.wikidata.org/wiki/Q2160088","display_name":"Robust optimization","level":2,"score":0.4106411},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.39440483},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.3458016},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24926266}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1287/opre.2022.2363","pdf_url":null,"source":{"id":"https://openalex.org/S125775545","display_name":"Operations Research","issn_l":"0030-364X","issn":["0030-364X","1526-5463"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315699","host_organization_name":"Institute for Operations Research and the Management Sciences","host_organization_lineage":["https://openalex.org/P4310315699"],"host_organization_lineage_names":["Institute for Operations Research and the Management Sciences"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2007.13982","pdf_url":"https://arxiv.org/pdf/2007.13982","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2007.13982","pdf_url":"https://arxiv.org/pdf/2007.13982","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.54}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":43,"referenced_works":["https://openalex.org/W1484551447","https://openalex.org/W1542523037","https://openalex.org/W1565176583","https://openalex.org/W1593532658","https://openalex.org/W1647779468","https://openalex.org/W2026653933","https://openalex.org/W2034368206","https://openalex.org/W2041797434","https://openalex.org/W2100960835","https://openalex.org/W2103459159","https://openalex.org/W2112483442","https://openalex.org/W2129590755","https://openalex.org/W2131953535","https://openalex.org/W2134281168","https://openalex.org/W2336156739","https://openalex.org/W2531499355","https://openalex.org/W2766966154","https://openalex.org/W2768276157","https://openalex.org/W2768894107","https://openalex.org/W2770618123","https://openalex.org/W2771004121","https://openalex.org/W2778783904","https://openalex.org/W2781132081","https://openalex.org/W2784407808","https://openalex.org/W2790376986","https://openalex.org/W2798836194","https://openalex.org/W2896534181","https://openalex.org/W2953362272","https://openalex.org/W2963134136","https://openalex.org/W2963450292","https://openalex.org/W2964031043","https://openalex.org/W2969738732","https://openalex.org/W2972484138","https://openalex.org/W3103090410","https://openalex.org/W3103360925","https://openalex.org/W3105580357","https://openalex.org/W3120740533","https://openalex.org/W3121149831","https://openalex.org/W3150893739","https://openalex.org/W3188960136","https://openalex.org/W4247165901","https://openalex.org/W4251616545","https://openalex.org/W769612788"],"related_works":["https://openalex.org/W4206042385","https://openalex.org/W2994787386","https://openalex.org/W2985746494","https://openalex.org/W2923628599","https://openalex.org/W2511384863","https://openalex.org/W2096089271","https://openalex.org/W2080773131","https://openalex.org/W2051519658","https://openalex.org/W2014100433","https://openalex.org/W2002304499"],"abstract_inverted_index":{"Reliable":[0],"Machine":[1],"Learning":[2],"via":[3],"Structured":[4],"Distributionally":[5],"Robust":[6,44],"Optimization":[7],"Data":[8],"sets":[9],"used":[10],"to":[11,32,65],"train":[12],"machine":[13,27],"learning":[14,28],"(ML)":[15],"models":[16,29,64],"often":[17],"suffer":[18],"from":[19],"sampling":[20],"biases":[21],"and":[22,36,54,104,122,126],"underrepresent":[23],"marginalized":[24],"groups.":[25],"Standard":[26],"are":[30],"trained":[31],"optimize":[33],"average":[34],"performance":[35,103,130],"perform":[37,66],"poorly":[38],"on":[39,117],"tail":[40],"subpopulations.":[41,70,133],"In":[42],"\u201cDistributionally":[43],"Losses":[45],"for":[46,61],"Latent":[47],"Covariate":[48],"Mixtures,\u201d":[49],"John":[50],"Duchi,":[51],"Tatsunori":[52],"Hashimoto,":[53],"Hongseok":[55],"Namkoong":[56],"formulate":[57],"a":[58,73,95],"DRO":[59],"approach":[60],"training":[62],"ML":[63],"uniformly":[67],"well":[68],"over":[69,78],"They":[71],"design":[72],"worst":[74,100,114],"case":[75,101,115],"optimization":[76],"procedure":[77,97,116],"structured":[79],"distribution":[80],"shifts":[81,86],"salient":[82],"in":[83,87],"predictive":[84],"applications:":[85],"(a":[88],"subset":[89],"of)":[90],"covariates.":[91],"The":[92],"authors":[93],"propose":[94],"convex":[96],"that":[98],"controls":[99],"subpopulation":[102],"provide":[105],"finite-sample":[106],"(nonparametric)":[107],"convergence":[108],"guarantees.":[109],"Empirically,":[110],"they":[111],"demonstrate":[112],"their":[113],"lexical":[118],"similarity,":[119],"wine":[120],"quality,":[121],"recidivism":[123],"prediction":[124],"tasks":[125],"observe":[127],"significantly":[128],"improved":[129],"across":[131],"unseen":[132]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3046022822","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":13},{"year":2020,"cited_by_count":8}],"updated_date":"2025-03-16T17:07:08.980678","created_date":"2020-08-03"}