{"id":"https://openalex.org/W3204933036","doi":"https://doi.org/10.1287/opre.2021.0792","title":"Comparing Sequential Forecasters","display_name":"Comparing Sequential Forecasters","publication_year":2024,"publication_date":"2024-07-01","ids":{"openalex":"https://openalex.org/W3204933036","doi":"https://doi.org/10.1287/opre.2021.0792","mag":"3204933036"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1287/opre.2021.0792","pdf_url":null,"source":{"id":"https://openalex.org/S125775545","display_name":"Operations Research","issn_l":"0030-364X","issn":["0030-364X","1526-5463"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315699","host_organization_name":"Institute for Operations Research and the Management Sciences","host_organization_lineage":["https://openalex.org/P4310315699"],"host_organization_lineage_names":["Institute for Operations Research and the Management Sciences"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5059859864","display_name":"Yo Joong Choe","orcid":"https://orcid.org/0000-0002-0614-9477"},"institutions":[{"id":"https://openalex.org/I40347166","display_name":"University of Chicago","ror":"https://ror.org/024mw5h28","country_code":"US","type":"funder","lineage":["https://openalex.org/I40347166"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yo Joong Choe","raw_affiliation_strings":["Data Science Institute, University of Chicago, Chicago, Illinois 60637;"],"affiliations":[{"raw_affiliation_string":"Data Science Institute, University of Chicago, Chicago, Illinois 60637;","institution_ids":["https://openalex.org/I40347166"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5032389695","display_name":"Aaditya Ramdas","orcid":"https://orcid.org/0000-0003-0497-311X"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"funder","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Aaditya Ramdas","raw_affiliation_strings":["Department of Statistics and Data Science, Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213"],"affiliations":[{"raw_affiliation_string":"Department of Statistics and Data Science, Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213","institution_ids":["https://openalex.org/I74973139"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.042,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.806312,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":95},"biblio":{"volume":"72","issue":"4","first_page":"1368","last_page":"1387"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9909,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9909,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T13398","display_name":"Data Analysis with R","score":0.9842,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11674","display_name":"Sports Analytics and Performance","score":0.9616,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.5520525}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5968277},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.5588897},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.5561844},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.5520525},{"id":"https://openalex.org/C2776892200","wikidata":"https://www.wikidata.org/wiki/Q7647093","display_name":"Survey of Professional Forecasters","level":3,"score":0.45039102},{"id":"https://openalex.org/C44249647","wikidata":"https://www.wikidata.org/wiki/Q208498","display_name":"Confidence interval","level":2,"score":0.432962},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35391653},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.34714603},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.33499023},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.27193224},{"id":"https://openalex.org/C126285488","wikidata":"https://www.wikidata.org/wiki/Q178476","display_name":"Monetary policy","level":2,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C556758197","wikidata":"https://www.wikidata.org/wiki/Q580018","display_name":"Monetary economics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1287/opre.2021.0792","pdf_url":null,"source":{"id":"https://openalex.org/S125775545","display_name":"Operations Research","issn_l":"0030-364X","issn":["0030-364X","1526-5463"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315699","host_organization_name":"Institute for Operations Research and the Management Sciences","host_organization_lineage":["https://openalex.org/P4310315699"],"host_organization_lineage_names":["Institute for Operations Research and the Management Sciences"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.55,"display_name":"Climate action","id":"https://metadata.un.org/sdg/13"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":69,"referenced_works":["https://openalex.org/W1489087445","https://openalex.org/W1590693676","https://openalex.org/W1599263113","https://openalex.org/W1979685007","https://openalex.org/W1987820735","https://openalex.org/W1997647721","https://openalex.org/W1998274472","https://openalex.org/W2025720061","https://openalex.org/W2027216529","https://openalex.org/W2029552385","https://openalex.org/W2031257157","https://openalex.org/W2039119502","https://openalex.org/W2042811347","https://openalex.org/W2047023085","https://openalex.org/W2061509875","https://openalex.org/W2073241381","https://openalex.org/W2075911929","https://openalex.org/W2075965721","https://openalex.org/W2079025608","https://openalex.org/W2103012681","https://openalex.org/W2106966080","https://openalex.org/W2130715829","https://openalex.org/W2133931066","https://openalex.org/W2142211552","https://openalex.org/W2144668858","https://openalex.org/W2152289182","https://openalex.org/W2293233856","https://openalex.org/W2324678363","https://openalex.org/W2552366573","https://openalex.org/W2796293253","https://openalex.org/W2797177778","https://openalex.org/W2892209356","https://openalex.org/W2914873385","https://openalex.org/W2944449625","https://openalex.org/W2949220468","https://openalex.org/W2962957099","https://openalex.org/W2963615467","https://openalex.org/W2963736810","https://openalex.org/W2963870508","https://openalex.org/W2971435259","https://openalex.org/W3014170849","https://openalex.org/W3015973740","https://openalex.org/W3021318637","https://openalex.org/W3028378217","https://openalex.org/W3030671780","https://openalex.org/W3037860452","https://openalex.org/W3083492456","https://openalex.org/W3099596344","https://openalex.org/W3101845932","https://openalex.org/W3108051726","https://openalex.org/W3124709904","https://openalex.org/W3125696988","https://openalex.org/W3126216366","https://openalex.org/W3134326115","https://openalex.org/W3138515773","https://openalex.org/W3148231156","https://openalex.org/W3159808052","https://openalex.org/W3172015733","https://openalex.org/W3175186327","https://openalex.org/W3187717145","https://openalex.org/W3190343448","https://openalex.org/W3203922546","https://openalex.org/W3204148984","https://openalex.org/W3207117583","https://openalex.org/W4233413206","https://openalex.org/W4239966440","https://openalex.org/W4247142182","https://openalex.org/W4291327732","https://openalex.org/W4388461534"],"related_works":["https://openalex.org/W3125880049","https://openalex.org/W3125685880","https://openalex.org/W3124708473","https://openalex.org/W3124630817","https://openalex.org/W2890577759","https://openalex.org/W2728923149","https://openalex.org/W2335091029","https://openalex.org/W2104577542","https://openalex.org/W1592434527","https://openalex.org/W1584670417"],"abstract_inverted_index":{"Anytime":[0],"Valid":[1],"Comparison":[2],"of":[3,20,59,123],"Sequential":[4,28],"Forecasters":[5],"How":[6],"do":[7],"we":[8],"compare":[9],"forecasters":[10],"that":[11,109],"each":[12],"make":[13],"a":[14,18,56,95],"probabilistic":[15],"prediction":[16],"on":[17,39,129,134],"sequence":[19],"events":[21],"(e.g.,":[22],"weather":[23,155],"and":[24,31,76,148,154],"sports)?":[25],"In":[26,141],"\u201cComparing":[27],"Forecasters,\u201d":[29],"Choe":[30],"Ramdas":[32],"propose":[33,55],"flexible":[34],"approaches":[35],"to":[36,85],"sequential":[37,57],"inference":[38],"the":[40,53,70,77,83,87,104,107,116,136,144],"mean":[41,119],"score":[42,71,137],"difference":[43,72],"between":[44],"any":[45],"two":[46],"forecasters.":[47,156],"To":[48],"estimate":[49],"this":[50],"time-varying":[51],"quantity,":[52],"authors":[54,92,145],"analog":[58],"confidence":[60,63],"intervals,":[61],"called":[62,100],"sequences":[64],"(CSs).":[65],"These":[66],"CSs":[67,147],"correctly":[68],"cover":[69],"under":[73],"continuous":[74],"monitoring,":[75],"evaluator":[78],"can":[79],"freely":[80],"peek":[81],"at":[82],"scores":[84],"stop":[86],"experiment":[88],"(\u201canytime":[89],"valid\u201d).":[90],"The":[91,121],"further":[93],"develop":[94],"complementary":[96],"anytime":[97],"valid":[98],"approach":[99],"e-processes,":[101],"which":[102],"quantify":[103],"evidence":[105],"against":[106],"claim":[108],"one":[110],"forecaster":[111],"is":[112],"never":[113],"better":[114],"than":[115],"other":[117,132],"in":[118],"scores.":[120],"validity":[122],"these":[124],"methods":[125],"does":[126],"not":[127],"depend":[128],"stationarity":[130],"or":[131],"assumptions":[133],"how":[135],"differences":[138],"evolve":[139],"sequentially.":[140],"their":[142],"paper,":[143],"showcase":[146],"e-processes":[149],"for":[150],"comparing":[151],"real-world":[152],"baseball":[153]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3204933036","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2025-03-26T10:17:20.975371","created_date":"2021-10-11"}