{"id":"https://openalex.org/W3025300920","doi":"https://doi.org/10.1287/ijoo.2022.0073","title":"Gradient Sampling Methods with Inexact Subproblem Solutions and Gradient Aggregation","display_name":"Gradient Sampling Methods with Inexact Subproblem Solutions and Gradient Aggregation","publication_year":2022,"publication_date":"2022-04-01","ids":{"openalex":"https://openalex.org/W3025300920","doi":"https://doi.org/10.1287/ijoo.2022.0073","mag":"3025300920"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1287/ijoo.2022.0073","pdf_url":null,"source":{"id":"https://openalex.org/S4210207407","display_name":"INFORMS Journal on Optimization","issn_l":"2575-1484","issn":["2575-1484","2575-1492"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310315699","host_organization_name":"Institute for Operations Research and the Management Sciences","host_organization_lineage":["https://openalex.org/P4310315699"],"host_organization_lineage_names":["Institute for Operations Research and the Management Sciences"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.1287/ijoo.2022.0073","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5005028153","display_name":"Frank E. Curtis","orcid":"https://orcid.org/0000-0001-7214-9187"},"institutions":[{"id":"https://openalex.org/I186143895","display_name":"Lehigh University","ror":"https://ror.org/012afjb06","country_code":"US","type":"funder","lineage":["https://openalex.org/I186143895"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Frank E. Curtis","raw_affiliation_strings":["Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, Pennsylvania 18015"],"affiliations":[{"raw_affiliation_string":"Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, Pennsylvania 18015","institution_ids":["https://openalex.org/I186143895"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036489015","display_name":"Minhan Li","orcid":"https://orcid.org/0000-0002-5234-0248"},"institutions":[{"id":"https://openalex.org/I186143895","display_name":"Lehigh University","ror":"https://ror.org/012afjb06","country_code":"US","type":"funder","lineage":["https://openalex.org/I186143895"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Minhan Li","raw_affiliation_strings":["Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, Pennsylvania 18015"],"affiliations":[{"raw_affiliation_string":"Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, Pennsylvania 18015","institution_ids":["https://openalex.org/I186143895"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":"4","issue":"4","first_page":"426","last_page":"445"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10963","display_name":"Advanced Optimization Algorithms Research","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/2612","display_name":"Numerical Analysis"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10963","display_name":"Advanced Optimization Algorithms Research","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/2612","display_name":"Numerical Analysis"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10545","display_name":"Optimization and Variational Analysis","score":0.9417,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/trust-region","display_name":"Trust region","score":0.614215},{"id":"https://openalex.org/keywords/minification","display_name":"Minification","score":0.53018326},{"id":"https://openalex.org/keywords/proximal-gradient-methods","display_name":"Proximal Gradient Methods","score":0.42823642}],"concepts":[{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.7030758},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.6787193},{"id":"https://openalex.org/C89109886","wikidata":"https://www.wikidata.org/wiki/Q1535924","display_name":"Trust region","level":3,"score":0.614215},{"id":"https://openalex.org/C147764199","wikidata":"https://www.wikidata.org/wiki/Q6865248","display_name":"Minification","level":2,"score":0.53018326},{"id":"https://openalex.org/C115680565","wikidata":"https://www.wikidata.org/wiki/Q5977448","display_name":"Gradient method","level":2,"score":0.5076364},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.5066198},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.46261507},{"id":"https://openalex.org/C77618280","wikidata":"https://www.wikidata.org/wiki/Q1155772","display_name":"Scheme (mathematics)","level":2,"score":0.45722002},{"id":"https://openalex.org/C10494615","wikidata":"https://www.wikidata.org/wiki/Q17086765","display_name":"Proximal Gradient Methods","level":4,"score":0.42823642},{"id":"https://openalex.org/C129844170","wikidata":"https://www.wikidata.org/wiki/Q41299","display_name":"Quadratic equation","level":2,"score":0.42709124},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.42077297},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.3568412},{"id":"https://openalex.org/C157972887","wikidata":"https://www.wikidata.org/wiki/Q463359","display_name":"Convex optimization","level":3,"score":0.32647356},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C178635117","wikidata":"https://www.wikidata.org/wiki/Q747499","display_name":"RADIUS","level":2,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1287/ijoo.2022.0073","pdf_url":null,"source":{"id":"https://openalex.org/S4210207407","display_name":"INFORMS Journal on Optimization","issn_l":"2575-1484","issn":["2575-1484","2575-1492"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310315699","host_organization_name":"Institute for Operations Research and the Management Sciences","host_organization_lineage":["https://openalex.org/P4310315699"],"host_organization_lineage_names":["Institute for Operations Research and the Management Sciences"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2005.07822","pdf_url":"https://arxiv.org/pdf/2005.07822","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1287/ijoo.2022.0073","pdf_url":null,"source":{"id":"https://openalex.org/S4210207407","display_name":"INFORMS Journal on Optimization","issn_l":"2575-1484","issn":["2575-1484","2575-1492"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310315699","host_organization_name":"Institute for Operations Research and the Management Sciences","host_organization_lineage":["https://openalex.org/P4310315699"],"host_organization_lineage_names":["Institute for Operations Research and the Management Sciences"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":45,"referenced_works":["https://openalex.org/W1551360398","https://openalex.org/W1553702074","https://openalex.org/W1963488456","https://openalex.org/W1964244351","https://openalex.org/W1967630104","https://openalex.org/W1988832226","https://openalex.org/W2029383729","https://openalex.org/W2031244688","https://openalex.org/W2033957915","https://openalex.org/W2041928877","https://openalex.org/W2042635221","https://openalex.org/W2043284395","https://openalex.org/W2051651878","https://openalex.org/W2063670264","https://openalex.org/W2064467857","https://openalex.org/W2064942524","https://openalex.org/W2065997029","https://openalex.org/W2071634839","https://openalex.org/W2074522218","https://openalex.org/W2079688774","https://openalex.org/W2084704795","https://openalex.org/W2084788303","https://openalex.org/W2088127528","https://openalex.org/W2094993225","https://openalex.org/W2100210445","https://openalex.org/W2151568819","https://openalex.org/W2153532571","https://openalex.org/W2224698616","https://openalex.org/W2531600399","https://openalex.org/W2587057446","https://openalex.org/W2611293703","https://openalex.org/W2751333275","https://openalex.org/W2754127623","https://openalex.org/W2798773971","https://openalex.org/W2951060965","https://openalex.org/W3006838504","https://openalex.org/W3029645440","https://openalex.org/W3081934664","https://openalex.org/W356322785","https://openalex.org/W4212912562","https://openalex.org/W4247489173","https://openalex.org/W4299439662","https://openalex.org/W4301014524","https://openalex.org/W633277346","https://openalex.org/W902317526"],"related_works":["https://openalex.org/W55142642","https://openalex.org/W4380302820","https://openalex.org/W4372267246","https://openalex.org/W4318347891","https://openalex.org/W4308864945","https://openalex.org/W4301121782","https://openalex.org/W2966107147","https://openalex.org/W2150911263","https://openalex.org/W2093227229","https://openalex.org/W1968745099"],"abstract_inverted_index":{"Gradient":[0],"sampling":[1],"(GS)":[2],"methods":[3,31,47,120],"for":[4,103,121],"the":[5,23,33,46,53,65,71,90,128,135,153],"minimization":[6],"of":[7,22,28,55,58,73,137],"objective":[8],"functions":[9],"that":[10,127,144],"may":[11],"be":[12,68,132],"nonconvex":[13],"and/or":[14],"nonsmooth":[15,122],"are":[16],"proposed,":[17],"analyzed,":[18],"and":[19],"tested.":[20],"One":[21],"most":[24],"computationally":[25],"expensive":[26],"components":[27],"contemporary":[29],"GS":[30,96,159],"is":[32,101,110,125],"need":[34],"to":[35],"solve":[36],"a":[37,95,99,108,158],"convex":[38],"quadratic":[39],"subproblem":[40,84,109],"in":[41,49,64,118],"each":[42],"iteration.":[43],"By":[44],"contrast,":[45],"proposed":[48,102],"this":[50,146],"paper":[51],"allow":[52],"use":[54],"inexact":[56,83],"solutions":[57],"these":[59],"subproblems,":[60],"which,":[61],"as":[62,114],"proved":[63,126],"paper,":[66],"can":[67,87,131,150],"incorporated":[69],"without":[70,134],"loss":[72,136],"theoretical":[74,138],"convergence":[75,139],"guarantees.":[76,140],"Numerical":[77,141],"experiments":[78,142],"show":[79,143],"that,":[80],"by":[81,94,157],"exploiting":[82],"solutions,":[85],"one":[86],"consistently":[88],"reduce":[89,152],"computational":[91,154],"effort":[92,155],"required":[93,156],"method.":[97,160],"Additionally,":[98],"strategy":[100],"aggregating":[104],"gradient":[105,147],"information":[106],"after":[107],"solved":[111],"(potentially":[112],"inexactly)":[113],"has":[115],"been":[116],"exploited":[117],"bundle":[119],"optimization.":[123],"It":[124],"aggregation":[129,148],"scheme":[130],"introduced":[133],"incorporating":[145],"approach":[149],"also":[151]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3025300920","counts_by_year":[],"updated_date":"2025-03-07T05:53:50.279300","created_date":"2020-05-21"}