{"id":"https://openalex.org/W2054085683","doi":"https://doi.org/10.1198/004017003188618779","title":"Optimal Foldover Plans for Two-Level Fractional Factorial Designs","display_name":"Optimal Foldover Plans for Two-Level Fractional Factorial Designs","publication_year":2003,"publication_date":"2003-05-01","ids":{"openalex":"https://openalex.org/W2054085683","doi":"https://doi.org/10.1198/004017003188618779","mag":"2054085683"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1198/004017003188618779","pdf_url":null,"source":{"id":"https://openalex.org/S985303","display_name":"Technometrics","issn_l":"0040-1706","issn":["0040-1706","1537-2723"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072161328","display_name":"William Li","orcid":"https://orcid.org/0000-0002-2562-769X"},"institutions":[{"id":"https://openalex.org/I130238516","display_name":"University of Minnesota","ror":"https://ror.org/017zqws13","country_code":"US","type":"education","lineage":["https://openalex.org/I130238516"]},{"id":"https://openalex.org/I4210101327","display_name":"Twin Cities Orthopedics","ror":"https://ror.org/01en4s460","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I4210101327"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"William Li","raw_affiliation_strings":["University of Minnesota Twin Cities"],"affiliations":[{"raw_affiliation_string":"University of Minnesota Twin Cities","institution_ids":["https://openalex.org/I130238516","https://openalex.org/I4210101327"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5057669385","display_name":"Dennis K. J. Lin","orcid":"https://orcid.org/0000-0003-2552-7709"},"institutions":[{"id":"https://openalex.org/I130769515","display_name":"Pennsylvania State University","ror":"https://ror.org/04p491231","country_code":"US","type":"education","lineage":["https://openalex.org/I130769515"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dennis K. J Lin","raw_affiliation_strings":["Pennsylvania State Univ#TAB#"],"affiliations":[{"raw_affiliation_string":"Pennsylvania State Univ#TAB#","institution_ids":["https://openalex.org/I130769515"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.905,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":95,"citation_normalized_percentile":{"value":0.940316,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"45","issue":"2","first_page":"142","last_page":"149"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11798","display_name":"Optimal Experimental Design Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11798","display_name":"Optimal Experimental Design Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10848","display_name":"Advanced Multi-Objective Optimization Algorithms","score":0.9728,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11235","display_name":"Statistical Methods in Clinical Trials","score":0.9455,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/fractional-factorial-design","display_name":"Fractional factorial design","score":0.7242982},{"id":"https://openalex.org/keywords/reversing","display_name":"Reversing","score":0.47394326}],"concepts":[{"id":"https://openalex.org/C16469947","wikidata":"https://www.wikidata.org/wiki/Q2400745","display_name":"Fractional factorial design","level":3,"score":0.7242982},{"id":"https://openalex.org/C2776505523","wikidata":"https://www.wikidata.org/wiki/Q4785468","display_name":"Plan (archaeology)","level":2,"score":0.5844903},{"id":"https://openalex.org/C2781085045","wikidata":"https://www.wikidata.org/wiki/Q7318308","display_name":"Reversing","level":2,"score":0.47394326},{"id":"https://openalex.org/C2164484","wikidata":"https://www.wikidata.org/wiki/Q5170150","display_name":"Core (optical fiber)","level":2,"score":0.4693528},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.39878273},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.37261492},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.34638155},{"id":"https://openalex.org/C169222746","wikidata":"https://www.wikidata.org/wiki/Q4116558","display_name":"Factorial experiment","level":2,"score":0.32014072},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.13816366},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08296245},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.06391016},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C171146098","wikidata":"https://www.wikidata.org/wiki/Q124192","display_name":"Automotive engineering","level":1,"score":0.0},{"id":"https://openalex.org/C95457728","wikidata":"https://www.wikidata.org/wiki/Q309","display_name":"History","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1198/004017003188618779","pdf_url":null,"source":{"id":"https://openalex.org/S985303","display_name":"Technometrics","issn_l":"0040-1706","issn":["0040-1706","1537-2723"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.58,"display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1579882851","https://openalex.org/W160536692","https://openalex.org/W1968226729","https://openalex.org/W2004341041","https://openalex.org/W2030755327","https://openalex.org/W2080317910","https://openalex.org/W2113650539","https://openalex.org/W2183719305","https://openalex.org/W2791467530","https://openalex.org/W295779321","https://openalex.org/W2987849413","https://openalex.org/W4233563862","https://openalex.org/W651150315"],"related_works":["https://openalex.org/W4297784416","https://openalex.org/W4230472231","https://openalex.org/W2945855118","https://openalex.org/W2086594805","https://openalex.org/W2011415552","https://openalex.org/W1998748191","https://openalex.org/W1988781812","https://openalex.org/W1967114272","https://openalex.org/W1590352712","https://openalex.org/W1558250505"],"abstract_inverted_index":{"A":[0,173],"commonly":[1],"used":[2],"follow-up":[3],"experiment":[4],"strategy":[5],"involves":[6],"the":[7,15,23,31,42,48,79,96,136,189,193,199,207],"use":[8],"of":[9,17,22,33,85,98,120,135,139,160,176,198],"a":[10,27,52,110,121,129,161],"foldover":[11,28,43,65,70,91,112,118,131,150,158,168,205],"design":[12,54,125,163,187,196,201],"by":[13],"reversing":[14,95],"signs":[16,36,97],"one":[18,99,190],"or":[19,100],"more":[20],"columns":[21,34],"initial":[24,200],"design.":[25,113],"Defining":[26],"plan":[29,119,132,159],"as":[30],"collection":[32],"whose":[35],"are":[37,104,147,153],"to":[38,108,128,155],"be":[39,171],"reversed":[40],"in":[41],"design,":[44],"this":[45],"article":[46],"answers":[47],"following":[49],"question:":[50],"Given":[51],"2k\u2212p":[53,122,149,162,186,212],"with":[55],"k":[56,140],"factors":[57],"and":[58,74,77,164,202],"p":[59,137],"generators,":[60],"what":[61],"is":[62,126,181,188],"its":[63,203],"optimal":[64,69,204],"plan?":[66],"We":[67,114],"obtain":[68],"plans":[71,87,92,151,169],"for":[72,81],"16":[73],"32":[75],"runs":[76],"tabulate":[78],"results":[80],"practical":[82],"use.":[83],"Most":[84],"these":[86,167],"differ":[88],"from":[89],"traditional":[90],"that":[93,116,145,152,192],"involve":[94],"all":[101,211],"columns.":[102],"There":[103],"several":[105],"equivalent":[106,127,154],"ways":[107],"generate":[109],"particular":[111],"demonstrate":[115,165],"any":[117,156],"fractional":[123],"factorial":[124],"core":[130,157],"consisting":[133,197],"only":[134],"out":[138],"factors.":[141],"Furthermore,":[142],"we":[143],"prove":[144],"there":[146],"exactly":[148],"how":[166],"can":[170],"constructed.":[172],"new":[174],"class":[175],"designs":[177,180],"called":[178],"combined-optimal":[179,185],"introduced.":[182],"An":[183],"n-run":[184],"such":[191],"combined":[194],"2k\u2212p+1":[195],"has":[206],"minimum":[208],"aberration":[209],"among":[210],"designs.":[213]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2054085683","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":5},{"year":2017,"cited_by_count":7},{"year":2016,"cited_by_count":5},{"year":2015,"cited_by_count":4},{"year":2014,"cited_by_count":9},{"year":2013,"cited_by_count":9},{"year":2012,"cited_by_count":6}],"updated_date":"2024-12-15T23:27:38.991896","created_date":"2016-06-24"}