{"id":"https://openalex.org/W2904005914","doi":"https://doi.org/10.1186/s40537-018-0159-y","title":"Building efficient fuzzy regression trees for large scale and high dimensional problems","display_name":"Building efficient fuzzy regression trees for large scale and high dimensional problems","publication_year":2018,"publication_date":"2018-12-01","ids":{"openalex":"https://openalex.org/W2904005914","doi":"https://doi.org/10.1186/s40537-018-0159-y","mag":"2904005914"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s40537-018-0159-y","pdf_url":"https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-018-0159-y","source":{"id":"https://openalex.org/S2737955091","display_name":"Journal Of Big Data","issn_l":"2196-1115","issn":["2196-1115"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-018-0159-y","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029678231","display_name":"Javier C\u00f3zar","orcid":"https://orcid.org/0000-0001-7996-6104"},"institutions":[{"id":"https://openalex.org/I79189158","display_name":"University of Castilla-La Mancha","ror":"https://ror.org/05r78ng12","country_code":"ES","type":"funder","lineage":["https://openalex.org/I79189158"]}],"countries":["ES"],"is_corresponding":true,"raw_author_name":"Javier C\u00f3zar","raw_affiliation_strings":["Departamento de Sistemas Inform\u00e1ticos/I3A, Universidad de Castilla-La Mancha, 02071, Albacete, Spain"],"affiliations":[{"raw_affiliation_string":"Departamento de Sistemas Inform\u00e1ticos/I3A, Universidad de Castilla-La Mancha, 02071, Albacete, Spain","institution_ids":["https://openalex.org/I79189158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057031606","display_name":"Francesco Marcelloni","orcid":"https://orcid.org/0000-0002-5895-876X"},"institutions":[],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Francesco Marcelloni","raw_affiliation_strings":["Dipartimento di Ingegneria dell'Informazione, Largo Lucio Lazzarino 1, 56122, Pisa, Italy"],"affiliations":[{"raw_affiliation_string":"Dipartimento di Ingegneria dell'Informazione, Largo Lucio Lazzarino 1, 56122, Pisa, Italy","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047912788","display_name":"Jos\u00e9 A. G\u00e1mez","orcid":"https://orcid.org/0000-0003-1188-1117"},"institutions":[{"id":"https://openalex.org/I79189158","display_name":"University of Castilla-La Mancha","ror":"https://ror.org/05r78ng12","country_code":"ES","type":"funder","lineage":["https://openalex.org/I79189158"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Jos\u00e9 A. G\u00e1mez","raw_affiliation_strings":["Departamento de Sistemas Inform\u00e1ticos/I3A, Universidad de Castilla-La Mancha, 02071, Albacete, Spain"],"affiliations":[{"raw_affiliation_string":"Departamento de Sistemas Inform\u00e1ticos/I3A, Universidad de Castilla-La Mancha, 02071, Albacete, Spain","institution_ids":["https://openalex.org/I79189158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5065326327","display_name":"Luis de la Ossa","orcid":"https://orcid.org/0000-0003-1262-7479"},"institutions":[{"id":"https://openalex.org/I79189158","display_name":"University of Castilla-La Mancha","ror":"https://ror.org/05r78ng12","country_code":"ES","type":"funder","lineage":["https://openalex.org/I79189158"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Luis de la Ossa","raw_affiliation_strings":["Departamento de Sistemas Inform\u00e1ticos/I3A, Universidad de Castilla-La Mancha, 02071, Albacete, Spain"],"affiliations":[{"raw_affiliation_string":"Departamento de Sistemas Inform\u00e1ticos/I3A, Universidad de Castilla-La Mancha, 02071, Albacete, Spain","institution_ids":["https://openalex.org/I79189158"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5029678231"],"corresponding_institution_ids":["https://openalex.org/I79189158"],"apc_list":{"value":1060,"currency":"GBP","value_usd":1300},"apc_paid":{"value":1060,"currency":"GBP","value_usd":1300},"fwci":1.319,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":9,"citation_normalized_percentile":{"value":0.878711,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":"5","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10820","display_name":"Fuzzy Logic and Control Systems","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/spark","display_name":"SPARK (programming language)","score":0.6981715}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8338963},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.7563732},{"id":"https://openalex.org/C2781215313","wikidata":"https://www.wikidata.org/wiki/Q3493345","display_name":"SPARK (programming language)","level":2,"score":0.6981715},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.540886},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.5269485},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.50222325},{"id":"https://openalex.org/C77618280","wikidata":"https://www.wikidata.org/wiki/Q1155772","display_name":"Scheme (mathematics)","level":2,"score":0.4925676},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.47229412},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.46559486},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.45549023},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.43962213},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.43091872},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40814131},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39768186},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.26080823},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.1888673},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.11952117},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10335326},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s40537-018-0159-y","pdf_url":"https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-018-0159-y","source":{"id":"https://openalex.org/S2737955091","display_name":"Journal Of Big Data","issn_l":"2196-1115","issn":["2196-1115"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s40537-018-0159-y","pdf_url":"https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-018-0159-y","source":{"id":"https://openalex.org/S2737955091","display_name":"Journal Of Big Data","issn_l":"2196-1115","issn":["2196-1115"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Life on land","id":"https://metadata.un.org/sdg/15","score":0.62}],"grants":[{"funder":"https://openalex.org/F4320321764","funder_display_name":"Ministerio de Educaci\u00f3n, Cultura y Deporte","award_id":"FPU12/05102"},{"funder":"https://openalex.org/F4320324499","funder_display_name":"Universit\u00e0 di Pisa","award_id":"PRA 2017"},{"funder":"https://openalex.org/F4320335322","funder_display_name":"European Regional Development Fund","award_id":"TIN2016-77902-C3-1-P"},{"funder":"https://openalex.org/F4320335598","funder_display_name":"Agencia Estatal de Investigaci\u00f3n","award_id":"TIN2013-46638-C3-3-P"}],"datasets":[],"versions":[],"referenced_works_count":48,"referenced_works":["https://openalex.org/W1480376833","https://openalex.org/W1554944419","https://openalex.org/W1575842192","https://openalex.org/W1594031697","https://openalex.org/W1598064945","https://openalex.org/W1736726159","https://openalex.org/W1843415386","https://openalex.org/W1967148170","https://openalex.org/W1980485115","https://openalex.org/W1987387190","https://openalex.org/W2013009184","https://openalex.org/W2015005801","https://openalex.org/W2015425744","https://openalex.org/W2015487637","https://openalex.org/W2026257972","https://openalex.org/W2026846567","https://openalex.org/W2040895929","https://openalex.org/W2047777882","https://openalex.org/W2056713142","https://openalex.org/W2061430293","https://openalex.org/W2064817890","https://openalex.org/W2072154218","https://openalex.org/W2080294211","https://openalex.org/W2091172912","https://openalex.org/W2092013679","https://openalex.org/W2097994458","https://openalex.org/W2109472859","https://openalex.org/W2123199310","https://openalex.org/W2135511047","https://openalex.org/W2143394441","https://openalex.org/W2157428561","https://openalex.org/W2161548576","https://openalex.org/W2166912610","https://openalex.org/W2173213060","https://openalex.org/W2189465200","https://openalex.org/W2293618063","https://openalex.org/W2506154138","https://openalex.org/W2555464586","https://openalex.org/W2559872199","https://openalex.org/W2565966100","https://openalex.org/W2911964244","https://openalex.org/W2995564009","https://openalex.org/W3085162807","https://openalex.org/W3215186461","https://openalex.org/W372068302","https://openalex.org/W4252684946","https://openalex.org/W4285719527","https://openalex.org/W4300601563"],"related_works":["https://openalex.org/W4388692845","https://openalex.org/W4289884158","https://openalex.org/W4288365262","https://openalex.org/W4247566972","https://openalex.org/W3211874991","https://openalex.org/W3202731209","https://openalex.org/W2940614149","https://openalex.org/W2787485953","https://openalex.org/W2766461310","https://openalex.org/W2048488252"],"abstract_inverted_index":{"Regression":[0],"trees":[1],"(RTs)":[2],"are":[3],"simple,":[4],"but":[5],"powerful":[6],"models,":[7],"which":[8,73],"have":[9,115,127,153],"been":[10],"widely":[11],"used":[12,128],"in":[13,17,42,51,139,169],"the":[14,28,37,43,48,62,66,75,111,119,122,155,158,163,170,188],"last":[15],"decades":[16],"different":[18],"scopes.":[19],"Fuzzy":[20],"RTs":[21,26,103],"(FRTs)":[22],"add":[23],"fuzziness":[24],"to":[25,46,60,181,198],"with":[27,32,157],"aim":[29,45],"of":[30,36,53,77,80,141],"dealing":[31],"uncertain":[33],"environments.":[34],"Most":[35],"FRT":[38,96],"learning":[39,98],"approaches":[40],"proposed":[41],"literature":[44],"improve":[47],"accuracy,":[49],"measured":[50],"terms":[52,140],"mean":[54,142],"squared":[55,143],"error,":[56,144],"and":[57,117,131,147,162,183,196],"often":[58],"neglect":[59],"consider":[61],"computation":[63,145],"time":[64,146],"and/or":[65],"memory":[67],"requirements.":[68],"In":[69,89],"today's":[70],"application":[71],"domains,":[72],"require":[74],"management":[76],"huge":[78],"amounts":[79],"data,":[81],"this":[82,90],"carelessness":[83],"can":[84],"strongly":[85],"limit":[86],"their":[87],"use.":[88],"paper,":[91],"we":[92,152],"propose":[93],"a":[94,150],"distributed":[95,159],"(DFRT)":[97],"scheme":[99,120],"for":[100,135],"generating":[101],"binary":[102],"from":[104],"big":[105],"datasets,":[106],"that":[107,176],"is":[108],"based":[109],"on":[110,121],"MapReduce":[112],"paradigm.":[113],"We":[114,126],"designed":[116],"implemented":[118],"Apache":[123],"Spark":[124,171],"framework.":[125],"eight":[129],"real-world":[130],"four":[132],"synthetic":[133],"datasets":[134],"evaluating":[136],"its":[137],"performance,":[138,189],"scalability.":[148],"As":[149],"baseline,":[151],"compared":[154],"results":[156],"RT":[160],"(DRT)":[161],"Distributed":[164],"Random":[165],"Forest":[166],"(DRF)":[167],"available":[168],"MLlib":[172],"library.":[173],"Results":[174],"show":[175],"our":[177],"DFRT":[178,190],"scales":[179],"similarly":[180,197],"DRT":[182,195],"better":[184,193],"than":[185,194],"DRF.":[186,199],"Regarding":[187],"generalizes":[191],"much":[192]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2904005914","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":3}],"updated_date":"2025-04-23T23:46:12.323884","created_date":"2018-12-22"}