{"id":"https://openalex.org/W4388230999","doi":"https://doi.org/10.1186/s13321-023-00771-3","title":"DeepSA: a deep-learning driven predictor of compound synthesis accessibility","display_name":"DeepSA: a deep-learning driven predictor of compound synthesis accessibility","publication_year":2023,"publication_date":"2023-11-02","ids":{"openalex":"https://openalex.org/W4388230999","doi":"https://doi.org/10.1186/s13321-023-00771-3","pmid":"https://pubmed.ncbi.nlm.nih.gov/37919805"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-023-00771-3","pdf_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00771-3","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00771-3","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101951182","display_name":"Shihang Wang","orcid":"https://orcid.org/0000-0002-4714-6504"},"institutions":[{"id":"https://openalex.org/I30809798","display_name":"ShanghaiTech University","ror":"https://ror.org/030bhh786","country_code":"CN","type":"education","lineage":["https://openalex.org/I30809798"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shihang Wang","raw_affiliation_strings":["Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China","institution_ids":["https://openalex.org/I30809798"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100403244","display_name":"Lin Wang","orcid":"https://orcid.org/0000-0003-2482-7638"},"institutions":[{"id":"https://openalex.org/I30809798","display_name":"ShanghaiTech University","ror":"https://ror.org/030bhh786","country_code":"CN","type":"education","lineage":["https://openalex.org/I30809798"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lin Wang","raw_affiliation_strings":["Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China","institution_ids":["https://openalex.org/I30809798"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102021687","display_name":"Fenglei Li","orcid":"https://orcid.org/0009-0006-2145-1347"},"institutions":[{"id":"https://openalex.org/I30809798","display_name":"ShanghaiTech University","ror":"https://ror.org/030bhh786","country_code":"CN","type":"education","lineage":["https://openalex.org/I30809798"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fenglei Li","raw_affiliation_strings":["School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China","institution_ids":["https://openalex.org/I30809798"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5068731692","display_name":"Fang Bai","orcid":"https://orcid.org/0000-0003-1468-5568"},"institutions":[{"id":"https://openalex.org/I30809798","display_name":"ShanghaiTech University","ror":"https://ror.org/030bhh786","country_code":"CN","type":"education","lineage":["https://openalex.org/I30809798"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fang Bai","raw_affiliation_strings":["School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China","institution_ids":["https://openalex.org/I30809798"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1290,"currency":"GBP","value_usd":1582,"provenance":"doaj"},"apc_paid":{"value":1290,"currency":"GBP","value_usd":1582,"provenance":"doaj"},"fwci":2.44,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":6,"citation_normalized_percentile":{"value":0.999879,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"15","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13180","display_name":"Chemistry and Chemical Engineering","score":0.9505,"subfield":{"id":"https://openalex.org/subfields/2304","display_name":"Environmental Chemistry"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.47111252}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82477283},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5986362},{"id":"https://openalex.org/C74187038","wikidata":"https://www.wikidata.org/wiki/Q1418791","display_name":"Drug discovery","level":2,"score":0.5713897},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.543095},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49700406},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.47111252},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.4338175},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.24764454},{"id":"https://openalex.org/C60644358","wikidata":"https://www.wikidata.org/wiki/Q128570","display_name":"Bioinformatics","level":1,"score":0.15720972},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-023-00771-3","pdf_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00771-3","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621138","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/37919805","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-023-00771-3","pdf_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00771-3","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.61}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"82003654"},{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":"2022YFC3400501"}],"datasets":[],"versions":[],"referenced_works_count":52,"referenced_works":["https://openalex.org/W1757990252","https://openalex.org/W1971524020","https://openalex.org/W1985897129","https://openalex.org/W1989779568","https://openalex.org/W2063982514","https://openalex.org/W2132690238","https://openalex.org/W2136171948","https://openalex.org/W2160062915","https://openalex.org/W2160592148","https://openalex.org/W2239399164","https://openalex.org/W2318883360","https://openalex.org/W2320985137","https://openalex.org/W2346947594","https://openalex.org/W2599156179","https://openalex.org/W2783658781","https://openalex.org/W2900090807","https://openalex.org/W2911489562","https://openalex.org/W2949899255","https://openalex.org/W2953427596","https://openalex.org/W2973114758","https://openalex.org/W2979860957","https://openalex.org/W2997680655","https://openalex.org/W3005441379","https://openalex.org/W3007641474","https://openalex.org/W3030402150","https://openalex.org/W3101155908","https://openalex.org/W3113012321","https://openalex.org/W3123775255","https://openalex.org/W3128439490","https://openalex.org/W3128539030","https://openalex.org/W3143491409","https://openalex.org/W3153418506","https://openalex.org/W3159619432","https://openalex.org/W3159696109","https://openalex.org/W3181844989","https://openalex.org/W3182055317","https://openalex.org/W3192258665","https://openalex.org/W3194855384","https://openalex.org/W3201230437","https://openalex.org/W3202586005","https://openalex.org/W3207373390","https://openalex.org/W3209416355","https://openalex.org/W3210033038","https://openalex.org/W3212417448","https://openalex.org/W3213727676","https://openalex.org/W4200281017","https://openalex.org/W4210830424","https://openalex.org/W4224218893","https://openalex.org/W4281743220","https://openalex.org/W4303427412","https://openalex.org/W4304203195","https://openalex.org/W4316095903"],"related_works":["https://openalex.org/W4383066092","https://openalex.org/W4380075502","https://openalex.org/W4375867731","https://openalex.org/W4304166257","https://openalex.org/W4294635752","https://openalex.org/W4230611425","https://openalex.org/W3000197790","https://openalex.org/W2731899572","https://openalex.org/W2611989081","https://openalex.org/W2480711475"],"abstract_inverted_index":{"With":[0],"the":[1,26,60,109,136,175,186],"continuous":[2],"development":[3],"of":[4,28,43,63,87,149,182],"artificial":[5],"intelligence":[6],"technology,":[7],"more":[8,10],"and":[9,102,138,144,165,185],"computational":[11,52],"models":[12],"for":[13,133,141],"generating":[14],"new":[15],"molecules":[16,89,120,132],"are":[17,22,32,122],"being":[18],"developed.":[19],"However,":[20],"we":[21],"often":[23],"confronted":[24],"with":[25,151],"question":[27],"whether":[29],"these":[30],"compounds":[31],"easy":[33],"or":[34],"difficult":[35,123],"to":[36,40,58,70,124],"synthesize,":[37],"which":[38,65],"refers":[39],"synthetic":[41],"accessibility":[42,62],"compounds.":[44],"In":[45],"this":[46],"study,":[47],"a":[48,67,75,85,104,147,152],"deep":[49],"learning":[50],"based":[51],"model":[53,78],"called":[54],"DeepSA,":[55],"was":[56,80],"proposed":[57],"predict":[59],"synthesis":[61],"compounds,":[64],"provides":[66],"useful":[68],"tool":[69],"choose":[71],"molecules.":[72],"DeepSA":[73,150,170],"is":[74,171,188],"chemical":[76],"language":[77,93],"that":[79,121,157],"developed":[81],"by":[82],"training":[83],"on":[84,174],"dataset":[86],"3,593,053":[88],"using":[90,158],"various":[91],"natural":[92],"processing":[94],"(NLP)":[95],"algorithms,":[96],"offering":[97],"advantages":[98],"over":[99],"state-of-the-art":[100],"methods":[101],"having":[103],"much":[105],"higher":[106],"area":[107],"under":[108],"receiver":[110],"operating":[111],"characteristic":[112],"curve":[113],"(AUROC),":[114],"i.e.,":[115],"89.6%,":[116],"in":[117],"discriminating":[118],"those":[119],"synthesize.":[125],"This":[126],"helps":[127],"users":[128],"select":[129],"less":[130],"expensive":[131],"synthesis,":[134],"reducing":[135],"time":[137],"cost":[139],"required":[140],"drug":[142],"discovery":[143],"development.":[145],"Interestingly,":[146],"comparison":[148],"Graph":[153],"Attention-based":[154],"method":[155],"shows":[156],"SMILES":[159],"alone":[160],"can":[161],"also":[162],"efficiently":[163],"visualize":[164],"extract":[166],"compound's":[167],"informative":[168],"features.":[169],"available":[172,189],"online":[173],"below":[176],"web":[177],"server":[178],"(":[179],"https://bailab.siais.shanghaitech.edu.cn/services/deepsa/":[180],")":[181],"our":[183],"group,":[184],"code":[187],"at":[190],"https://github.com/Shihang-Wang-58/DeepSA":[191],".":[192]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388230999","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-31T05:59:53.629324","created_date":"2023-11-03"}