{"id":"https://openalex.org/W4385231489","doi":"https://doi.org/10.1186/s13321-023-00733-9","title":"Explaining compound activity predictions with a substructure-aware loss for graph neural networks","display_name":"Explaining compound activity predictions with a substructure-aware loss for graph neural networks","publication_year":2023,"publication_date":"2023-07-25","ids":{"openalex":"https://openalex.org/W4385231489","doi":"https://doi.org/10.1186/s13321-023-00733-9","pmid":"https://pubmed.ncbi.nlm.nih.gov/37491407"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-023-00733-9","pdf_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00733-9","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00733-9","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5034958835","display_name":"Kenza Amara","orcid":"https://orcid.org/0000-0001-7139-5562"},"institutions":[{"id":"https://openalex.org/I4210164937","display_name":"Microsoft Research (United Kingdom)","ror":"https://ror.org/05k87vq12","country_code":"GB","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210164937"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Kenza Amara","raw_affiliation_strings":["Microsoft Research AI4Science, 21 Station Rd., Cambridge, CB1 2FB, UK"],"affiliations":[{"raw_affiliation_string":"Microsoft Research AI4Science, 21 Station Rd., Cambridge, CB1 2FB, UK","institution_ids":["https://openalex.org/I4210164937"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038390721","display_name":"Raquel Rodr\u00edguez-P\u00e9rez","orcid":"https://orcid.org/0000-0002-2992-3402"},"institutions":[{"id":"https://openalex.org/I4400600974","display_name":"Novartis Institutes for BioMedical Research","ror":"https://ror.org/053gv2m95","country_code":null,"type":"funder","lineage":["https://openalex.org/I1283582996","https://openalex.org/I4400600974"]},{"id":"https://openalex.org/I1283582996","display_name":"Novartis (Switzerland)","ror":"https://ror.org/02f9zrr09","country_code":"CH","type":"funder","lineage":["https://openalex.org/I1283582996"]}],"countries":["CH"],"is_corresponding":true,"raw_author_name":"Raquel Rodr\u00edguez-P\u00e9rez","raw_affiliation_strings":["Novartis Institutes for Biomedical Research, Novartis Campus, 4002, Basel, Switzerland"],"affiliations":[{"raw_affiliation_string":"Novartis Institutes for Biomedical Research, Novartis Campus, 4002, Basel, Switzerland","institution_ids":["https://openalex.org/I4400600974","https://openalex.org/I1283582996"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100700305","display_name":"Jos\u00e9 Jim\u00e9nez-Luna","orcid":"https://orcid.org/0000-0002-5335-7834"},"institutions":[{"id":"https://openalex.org/I4210164937","display_name":"Microsoft Research (United Kingdom)","ror":"https://ror.org/05k87vq12","country_code":"GB","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210164937"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Jos\u00e9 Jim\u00e9nez-Luna","raw_affiliation_strings":["Microsoft Research AI4Science, 21 Station Rd., Cambridge, CB1 2FB, UK"],"affiliations":[{"raw_affiliation_string":"Microsoft Research AI4Science, 21 Station Rd., Cambridge, CB1 2FB, UK","institution_ids":["https://openalex.org/I4210164937"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5038390721"],"corresponding_institution_ids":["https://openalex.org/I4400600974","https://openalex.org/I1283582996"],"apc_list":{"value":1290,"currency":"GBP","value_usd":1582},"apc_paid":{"value":1290,"currency":"GBP","value_usd":1582},"fwci":1.627,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":5,"citation_normalized_percentile":{"value":0.784749,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":90},"biblio":{"volume":"15","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10836","display_name":"Metabolomics and Mass Spectrometry Studies","score":0.9198,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cheminformatics","display_name":"Cheminformatics","score":0.60858244},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.58742267},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5505892}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76825297},{"id":"https://openalex.org/C68762167","wikidata":"https://www.wikidata.org/wiki/Q910164","display_name":"Cheminformatics","level":2,"score":0.60858244},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.58742267},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56942713},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.55685806},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5505892},{"id":"https://openalex.org/C189950617","wikidata":"https://www.wikidata.org/wiki/Q937228","display_name":"Property (philosophy)","level":2,"score":0.539414},{"id":"https://openalex.org/C74187038","wikidata":"https://www.wikidata.org/wiki/Q1418791","display_name":"Drug discovery","level":2,"score":0.53004074},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5090403},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.49154028},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.40683392},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.30034244},{"id":"https://openalex.org/C60644358","wikidata":"https://www.wikidata.org/wiki/Q128570","display_name":"Bioinformatics","level":1,"score":0.13919172},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-023-00733-9","pdf_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00733-9","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369817","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/37491407","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-023-00733-9","pdf_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00733-9","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.5,"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3"}],"grants":[{"funder":"https://openalex.org/F4320307778","funder_display_name":"Novartis","award_id":null},{"funder":"https://openalex.org/F4320308943","funder_display_name":"Microsoft Research","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":46,"referenced_works":["https://openalex.org/W2019678805","https://openalex.org/W2027376226","https://openalex.org/W2033757486","https://openalex.org/W2039609876","https://openalex.org/W2047603685","https://openalex.org/W2060531713","https://openalex.org/W2096864392","https://openalex.org/W2128428930","https://openalex.org/W2134967712","https://openalex.org/W2146844279","https://openalex.org/W2168480393","https://openalex.org/W2268755124","https://openalex.org/W2295107390","https://openalex.org/W2401258374","https://openalex.org/W2517880718","https://openalex.org/W2594183968","https://openalex.org/W2606202972","https://openalex.org/W2790808809","https://openalex.org/W2916327454","https://openalex.org/W2946617578","https://openalex.org/W2953948143","https://openalex.org/W2962858109","https://openalex.org/W2966357564","https://openalex.org/W2995345309","https://openalex.org/W2998496395","https://openalex.org/W3023042104","https://openalex.org/W3093687066","https://openalex.org/W3133900975","https://openalex.org/W3173178613","https://openalex.org/W3201988411","https://openalex.org/W4200071670","https://openalex.org/W4210436046","https://openalex.org/W4220790374","https://openalex.org/W4221114454","https://openalex.org/W4221151574","https://openalex.org/W4225252134","https://openalex.org/W4225876201","https://openalex.org/W4229060137","https://openalex.org/W4283367795","https://openalex.org/W4293563303","https://openalex.org/W4300961340","https://openalex.org/W4309258819","https://openalex.org/W4310222865","https://openalex.org/W4310603653","https://openalex.org/W4313703134","https://openalex.org/W4360992523"],"related_works":["https://openalex.org/W4402084195","https://openalex.org/W4386509167","https://openalex.org/W4376484878","https://openalex.org/W4293771607","https://openalex.org/W3165034028","https://openalex.org/W2889938001","https://openalex.org/W2070692310","https://openalex.org/W1964657534","https://openalex.org/W1573015311","https://openalex.org/W1570419641"],"abstract_inverted_index":{"Abstract":[0],"Explainable":[1],"machine":[2],"learning":[3,49],"is":[4,84],"increasingly":[5],"used":[6],"in":[7,118,123],"drug":[8,119],"discovery":[9,120],"to":[10,22,86,113],"help":[11],"rationalize":[12],"compound":[13],"property":[14,32],"predictions.":[15],"Feature":[16],"attribution":[17,38],"techniques":[18],"are":[19,27,131],"popular":[20,47],"choices":[21],"identify":[23],"which":[24],"molecular":[25,36],"substructures":[26],"responsible":[28],"for":[29,46,82,89],"a":[30,76,104],"predicted":[31],"change.":[33],"However,":[34],"established":[35],"feature":[37],"methods":[39],"have":[40],"so":[41],"far":[42],"displayed":[43],"low":[44],"performance":[45],"deep":[48],"algorithms":[50],"such":[51,64],"as":[52,65],"graph":[53],"neural":[54],"networks":[55],"(GNNs),":[56],"especially":[57],"when":[58],"compared":[59],"with":[60,69,115],"simpler":[61],"modeling":[62],"alternatives":[63],"random":[66],"forests":[67],"coupled":[68],"atom":[70],"masking.":[71],"To":[72],"mitigate":[73],"this":[74],"problem,":[75],"modification":[77],"of":[78,95],"the":[79,111],"regression":[80],"objective":[81],"GNNs":[83],"proposed":[85],"specifically":[87],"account":[88],"common":[90],"core":[91],"structures":[92],"between":[93],"pairs":[94],"molecules.":[96],"The":[97],"presented":[98],"approach":[99],"shows":[100],"higher":[101],"accuracy":[102],"on":[103],"recently-proposed":[105],"explainability":[106,117],"benchmark.":[107],"This":[108],"methodology":[109],"has":[110],"potential":[112],"assist":[114],"model":[116],"pipelines,":[121],"particularly":[122],"lead":[124],"optimization":[125],"efforts":[126],"where":[127],"specific":[128],"chemical":[129],"series":[130],"investigated.":[132]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385231489","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":1}],"updated_date":"2025-03-26T15:03:22.270972","created_date":"2023-07-26"}