{"id":"https://openalex.org/W4362733319","doi":"https://doi.org/10.1186/s13321-023-00715-x","title":"MetaRF: attention-based random forest for reaction yield prediction with a few trails","display_name":"MetaRF: attention-based random forest for reaction yield prediction with a few trails","publication_year":2023,"publication_date":"2023-04-10","ids":{"openalex":"https://openalex.org/W4362733319","doi":"https://doi.org/10.1186/s13321-023-00715-x","pmid":"https://pubmed.ncbi.nlm.nih.gov/37038222"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-023-00715-x","pdf_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00715-x","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00715-x","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100627357","display_name":"Kexin Chen","orcid":"https://orcid.org/0000-0001-5212-0635"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kexin Chen","raw_affiliation_strings":["Department of Computer Science and Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101415870","display_name":"Guangyong Chen","orcid":"https://orcid.org/0000-0002-5892-8608"},"institutions":[{"id":"https://openalex.org/I4210123185","display_name":"Zhejiang Lab","ror":"https://ror.org/02m2h7991","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210123185"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Guangyong Chen","raw_affiliation_strings":["Zhejiang Lab, Zhejiang, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang Lab, Zhejiang, China","institution_ids":["https://openalex.org/I4210123185"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103160581","display_name":"Junyou Li","orcid":"https://orcid.org/0000-0002-8959-9122"},"institutions":[{"id":"https://openalex.org/I4210123185","display_name":"Zhejiang Lab","ror":"https://ror.org/02m2h7991","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210123185"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junyou Li","raw_affiliation_strings":["Zhejiang Lab, Zhejiang, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang Lab, Zhejiang, China","institution_ids":["https://openalex.org/I4210123185"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007178174","display_name":"Yuansheng Huang","orcid":null},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuansheng Huang","raw_affiliation_strings":["College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China"],"affiliations":[{"raw_affiliation_string":"College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035223959","display_name":"Ercheng Wang","orcid":"https://orcid.org/0000-0003-2074-4077"},"institutions":[{"id":"https://openalex.org/I4210123185","display_name":"Zhejiang Lab","ror":"https://ror.org/02m2h7991","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210123185"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ercheng Wang","raw_affiliation_strings":["Zhejiang Lab, Zhejiang, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang Lab, Zhejiang, China","institution_ids":["https://openalex.org/I4210123185"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028525523","display_name":"Tingjun Hou","orcid":"https://orcid.org/0000-0001-7227-2580"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tingjun Hou","raw_affiliation_strings":["College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China"],"affiliations":[{"raw_affiliation_string":"College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5032708386","display_name":"Pheng\u2010Ann Heng","orcid":"https://orcid.org/0000-0003-3055-5034"},"institutions":[{"id":"https://openalex.org/I4210123185","display_name":"Zhejiang Lab","ror":"https://ror.org/02m2h7991","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210123185"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Pheng-Ann Heng","raw_affiliation_strings":["Zhejiang Lab, Zhejiang, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang Lab, Zhejiang, China","institution_ids":["https://openalex.org/I4210123185"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5101415870"],"corresponding_institution_ids":["https://openalex.org/I4210123185"],"apc_list":{"value":1290,"currency":"GBP","value_usd":1582,"provenance":"doaj"},"apc_paid":{"value":1290,"currency":"GBP","value_usd":1582,"provenance":"doaj"},"fwci":2.99,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":15,"citation_normalized_percentile":{"value":0.99997,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"15","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11407","display_name":"Innovative Microfluidic and Catalytic Techniques Innovation","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77629817},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.7656},{"id":"https://openalex.org/C134121241","wikidata":"https://www.wikidata.org/wiki/Q899301","display_name":"Yield (engineering)","level":2,"score":0.63600016},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5757017},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5037679},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.4667592},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.46647888},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.4600669},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.42574045},{"id":"https://openalex.org/C33676613","wikidata":"https://www.wikidata.org/wiki/Q13415176","display_name":"Dimension (graph theory)","level":2,"score":0.424494},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.404742},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13246137},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C191897082","wikidata":"https://www.wikidata.org/wiki/Q11467","display_name":"Metallurgy","level":1,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-023-00715-x","pdf_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00715-x","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084704","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/37038222","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-023-00715-x","pdf_url":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-023-00715-x","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/15","score":0.67,"display_name":"Life on land"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62006219"},{"funder":"https://openalex.org/F4320324196","funder_display_name":"Innovation and Technology Commission - Hong Kong","award_id":"ITS/170/20"},{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":"2022YFE0200700"}],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1638832135","https://openalex.org/W1991201028","https://openalex.org/W1997974358","https://openalex.org/W2001141328","https://openalex.org/W2017422910","https://openalex.org/W2023673090","https://openalex.org/W2025262086","https://openalex.org/W2060586571","https://openalex.org/W2072550304","https://openalex.org/W2247455993","https://openalex.org/W2311607323","https://openalex.org/W2606363443","https://openalex.org/W2784918212","https://openalex.org/W2785942661","https://openalex.org/W2787252987","https://openalex.org/W2799620402","https://openalex.org/W2830440988","https://openalex.org/W2898280479","https://openalex.org/W2900743800","https://openalex.org/W2901661444","https://openalex.org/W2911964244","https://openalex.org/W2946458187","https://openalex.org/W2950911467","https://openalex.org/W2989747508","https://openalex.org/W3007396174","https://openalex.org/W3014689923","https://openalex.org/W3036578548","https://openalex.org/W3118349318","https://openalex.org/W3123901912","https://openalex.org/W3128474010","https://openalex.org/W3131860561","https://openalex.org/W3143418323","https://openalex.org/W3184853743","https://openalex.org/W3189145548","https://openalex.org/W3215313681","https://openalex.org/W4225353767","https://openalex.org/W4226145240","https://openalex.org/W4290725232","https://openalex.org/W4324122028"],"related_works":["https://openalex.org/W4386937079","https://openalex.org/W4386259002","https://openalex.org/W4308716060","https://openalex.org/W4280648719","https://openalex.org/W3193043704","https://openalex.org/W3171520305","https://openalex.org/W3135126032","https://openalex.org/W3033346322","https://openalex.org/W1924178503","https://openalex.org/W1546989560"],"abstract_inverted_index":{"Artificial":[0],"intelligence":[1],"has":[2],"deeply":[3],"revolutionized":[4],"the":[5,15,33,45,85,90,101,111,124,167,181],"field":[6],"of":[7,17,24,36,93,113,170,183],"medicinal":[8],"chemistry":[9],"with":[10,27,63],"many":[11],"impressive":[12],"applications,":[13],"but":[14],"success":[16],"these":[18],"applications":[19],"requires":[20],"a":[21,58,64,94,118,131],"massive":[22],"amount":[23],"training":[25],"samples":[26,139],"high-quality":[28],"annotations,":[29],"which":[30,50],"seriously":[31],"limits":[32],"wide":[34],"usage":[35],"data-driven":[37],"methods.":[38],"In":[39,162],"this":[40,70],"paper,":[41],"we":[42,72,128],"focus":[43],"on":[44,151,159],"reaction":[46],"yield":[47,87,169,185],"prediction":[48],"problem,":[49],"assists":[51],"chemists":[52],"in":[53,57],"selecting":[54],"high-yield":[55,175],"reactions":[56,176],"new":[59,114],"chemical":[60],"space":[61],"only":[62],"few":[65,119],"experimental":[66],"trials.":[67],"To":[68,122],"attack":[69],"challenge,":[71],"first":[73],"put":[74],"forth":[75],"MetaRF,":[76],"an":[77],"attention-based":[78],"random":[79,95],"forest":[80,96],"model":[81],"specially":[82],"designed":[83],"for":[84],"few-shot":[86,125,160],"prediction,":[88],"where":[89],"attention":[91],"weight":[92],"is":[97,149,177],"automatically":[98],"optimized":[99],"by":[100],"meta-learning":[102],"framework":[103],"and":[104,144,155],"can":[105],"be":[106,141],"quickly":[107],"adapted":[108],"to":[109,136,140,180],"predict":[110],"performance":[112,158],"reagents":[115],"while":[116],"given":[117],"additional":[120],"samples.":[121],"improve":[123],"learning":[126],"performance,":[127],"further":[129],"introduce":[130],"dimension-reduction":[132],"based":[133],"sampling":[134],"method":[135],"determine":[137],"valuable":[138],"experimentally":[142],"tested":[143],"then":[145],"learned.":[146],"Our":[147],"methodology":[148],"evaluated":[150],"three":[152],"different":[153],"datasets":[154],"acquires":[156],"satisfactory":[157],"prediction.":[161],"high-throughput":[163],"experimentation":[164],"(HTE)":[165],"datasets,":[166],"average":[168],"our":[171],"methodology's":[172],"top":[173],"10":[174],"relatively":[178],"close":[179],"results":[182],"ideal":[184],"selection.":[186]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4362733319","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":8}],"updated_date":"2024-12-30T14:45:21.267595","created_date":"2023-04-10"}