{"id":"https://openalex.org/W4214819330","doi":"https://doi.org/10.1186/s13321-022-00589-5","title":"DeSIDE-DDI: interpretable prediction of drug-drug interactions using drug-induced gene expressions","display_name":"DeSIDE-DDI: interpretable prediction of drug-drug interactions using drug-induced gene expressions","publication_year":2022,"publication_date":"2022-03-04","ids":{"openalex":"https://openalex.org/W4214819330","doi":"https://doi.org/10.1186/s13321-022-00589-5","pmid":"https://pubmed.ncbi.nlm.nih.gov/35246258"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-022-00589-5","pdf_url":"https://jcheminf.biomedcentral.com/track/pdf/10.1186/s13321-022-00589-5","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://jcheminf.biomedcentral.com/track/pdf/10.1186/s13321-022-00589-5","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100370249","display_name":"Eunyoung Kim","orcid":"https://orcid.org/0000-0003-0072-2233"},"institutions":[{"id":"https://openalex.org/I39534123","display_name":"Gwangju Institute of Science and Technology","ror":"https://ror.org/024kbgz78","country_code":"KR","type":"funder","lineage":["https://openalex.org/I39534123"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Eunyoung Kim","raw_affiliation_strings":["School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju, 61005, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju, 61005, Republic of Korea","institution_ids":["https://openalex.org/I39534123"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5043581759","display_name":"Hojung Nam","orcid":"https://orcid.org/0000-0002-5109-9114"},"institutions":[{"id":"https://openalex.org/I39534123","display_name":"Gwangju Institute of Science and Technology","ror":"https://ror.org/024kbgz78","country_code":"KR","type":"funder","lineage":["https://openalex.org/I39534123"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Hojung Nam","raw_affiliation_strings":["School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju, 61005, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju, 61005, Republic of Korea","institution_ids":["https://openalex.org/I39534123"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1290,"currency":"GBP","value_usd":1582},"apc_paid":{"value":1290,"currency":"GBP","value_usd":1582},"fwci":3.864,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":22,"citation_normalized_percentile":{"value":0.999886,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"14","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10887","display_name":"Bioinformatics and Genomic Networks","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9842,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.94819546},{"id":"https://openalex.org/keywords/drug-drug-interaction","display_name":"Drug-drug interaction","score":0.4434027},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.42782295},{"id":"https://openalex.org/keywords/drug-target","display_name":"Drug target","score":0.41926757}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.94819546},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73028064},{"id":"https://openalex.org/C2780035454","wikidata":"https://www.wikidata.org/wiki/Q8386","display_name":"Drug","level":2,"score":0.5953673},{"id":"https://openalex.org/C89611455","wikidata":"https://www.wikidata.org/wiki/Q6804646","display_name":"Mechanism (biology)","level":2,"score":0.51508707},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.488078},{"id":"https://openalex.org/C2910466267","wikidata":"https://www.wikidata.org/wiki/Q718753","display_name":"Drug-drug interaction","level":3,"score":0.4434027},{"id":"https://openalex.org/C97320921","wikidata":"https://www.wikidata.org/wiki/Q718753","display_name":"Drug interaction","level":3,"score":0.43104643},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4278386},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.42782295},{"id":"https://openalex.org/C2989108626","wikidata":"https://www.wikidata.org/wiki/Q904407","display_name":"Drug target","level":2,"score":0.41926757},{"id":"https://openalex.org/C36434225","wikidata":"https://www.wikidata.org/wiki/Q1895998","display_name":"Polypharmacy","level":2,"score":0.41829517},{"id":"https://openalex.org/C70721500","wikidata":"https://www.wikidata.org/wiki/Q177005","display_name":"Computational biology","level":1,"score":0.35960373},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35476416},{"id":"https://openalex.org/C98274493","wikidata":"https://www.wikidata.org/wiki/Q128406","display_name":"Pharmacology","level":1,"score":0.23474964},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.18431985},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.10162917},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-022-00589-5","pdf_url":"https://jcheminf.biomedcentral.com/track/pdf/10.1186/s13321-022-00589-5","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/47f5b893aa984cafb4ec0815fe58c5ae","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895921","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/35246258","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s13321-022-00589-5","pdf_url":"https://jcheminf.biomedcentral.com/track/pdf/10.1186/s13321-022-00589-5","source":{"id":"https://openalex.org/S180838163","display_name":"Journal of Cheminformatics","issn_l":"1758-2946","issn":["1758-2946"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.62,"id":"https://metadata.un.org/sdg/3","display_name":"Good health and well-being"}],"grants":[{"funder":"https://openalex.org/F4320322030","funder_display_name":"Ministry of Science, ICT and Future Planning","award_id":"NRF-2017M3A9C4092978"},{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":"NRF-2020R1A2C2004628"}],"datasets":["https://openalex.org/W4394189036","https://openalex.org/W4394239525","https://openalex.org/W4394129241","https://openalex.org/W4394382625","https://openalex.org/W4394465720","https://openalex.org/W4394461890","https://openalex.org/W4394523607"],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1018047830","https://openalex.org/W1888005072","https://openalex.org/W2036291018","https://openalex.org/W2036807791","https://openalex.org/W2053186076","https://openalex.org/W2063280109","https://openalex.org/W2085860988","https://openalex.org/W2086169342","https://openalex.org/W2090891622","https://openalex.org/W2109482131","https://openalex.org/W2119002393","https://openalex.org/W2135037015","https://openalex.org/W2184957013","https://openalex.org/W2192746854","https://openalex.org/W2200548835","https://openalex.org/W2323328911","https://openalex.org/W2460423734","https://openalex.org/W2589489260","https://openalex.org/W2608081584","https://openalex.org/W2612467560","https://openalex.org/W2765388300","https://openalex.org/W2767891136","https://openalex.org/W2786016794","https://openalex.org/W2791355014","https://openalex.org/W2802200505","https://openalex.org/W2962756421","https://openalex.org/W3004227146","https://openalex.org/W3005232784","https://openalex.org/W3024894285","https://openalex.org/W3090868364","https://openalex.org/W3104097132","https://openalex.org/W3108458441","https://openalex.org/W4211110473"],"related_works":["https://openalex.org/W4240902522","https://openalex.org/W3090408030","https://openalex.org/W3082755771","https://openalex.org/W2912785940","https://openalex.org/W2782683161","https://openalex.org/W2710539784","https://openalex.org/W2341887651","https://openalex.org/W2304968883","https://openalex.org/W2144815258","https://openalex.org/W1480660337"],"abstract_inverted_index":{"Adverse":[0],"drug-drug":[1],"interaction":[2,132],"(DDI)":[3],"is":[4,106,135,182],"a":[5,58,90,109,116],"major":[6],"concern":[7,50],"to":[8,11,101],"polypharmacy":[9],"due":[10],"its":[12],"unexpected":[13],"adverse":[14],"side":[15],"effects":[16,97],"and":[17,28,125,139,167],"must":[18],"be":[19],"identified":[20],"at":[21],"an":[22,121,126],"early":[23],"stage":[24],"of":[25,44,79,123,128],"drug":[26,87],"discovery":[27],"development.":[29],"Many":[30],"computational":[31],"methods":[32],"have":[33,48],"been":[34],"proposed":[35],"for":[36,62,81],"this":[37],"purpose,":[38],"but":[39],"most":[40],"require":[41],"specific":[42],"types":[43],"information,":[45],"or":[46],"they":[47],"less":[49],"in":[51,130,155],"interpretation":[52],"on":[53,184],"underlying":[54],"genes.":[55,102],"We":[56],"propose":[57],"deep":[59],"learning-based":[60],"framework":[61],"DDI":[63,172],"prediction":[64,173],"with":[65,150],"drug-induced":[66,160],"gene":[67,161],"expression":[68,77,162],"signatures":[69,163],"so":[70],"that":[71,93],"the":[72,76,95,118],"model":[73,84,119,177],"can":[74,146,170],"provide":[75],"level":[78],"interpretability":[80],"DDIs.":[82],"The":[83,179],"engineers":[85],"dynamic":[86],"features":[88],"using":[89,159],"gating":[91,166],"mechanism":[92],"mimics":[94],"co-administration":[96],"by":[98,165],"imposing":[99],"attention":[100],"Also,":[103],"each":[104],"side-effect":[105],"projected":[107],"into":[108],"latent":[110],"space":[111],"through":[112],"translating":[113,168],"embedding.":[114],"As":[115],"result,":[117],"achieved":[120],"AUC":[122],"0.889":[124],"AUPR":[127],"0.915":[129],"unseen":[131],"prediction,":[133],"which":[134],"competitively":[136],"very":[137],"accurate":[138],"outperforms":[140],"other":[141],"state-of-the-art":[142],"methods.":[143],"Furthermore,":[144],"it":[145],"predict":[147],"potential":[148],"DDIs":[149],"new":[151],"compounds":[152],"not":[153],"used":[154],"training.":[156],"In":[157],"conclusion,":[158],"followed":[164],"embedding":[169],"increase":[171],"accuracy":[174],"while":[175],"providing":[176],"interpretability.":[178],"source":[180],"code":[181],"available":[183],"GitHub":[185],"(":[186],"https://github.com/GIST-CSBL/DeSIDE-DDI":[187],").":[188]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4214819330","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":3}],"updated_date":"2025-04-22T07:49:54.883069","created_date":"2022-03-05"}