{"id":"https://openalex.org/W4319437616","doi":"https://doi.org/10.1186/s12911-023-02121-7","title":"Deep learning approach to detection of colonoscopic information from unstructured reports","display_name":"Deep learning approach to detection of colonoscopic information from unstructured reports","publication_year":2023,"publication_date":"2023-02-07","ids":{"openalex":"https://openalex.org/W4319437616","doi":"https://doi.org/10.1186/s12911-023-02121-7","pmid":"https://pubmed.ncbi.nlm.nih.gov/36750932"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s12911-023-02121-7","pdf_url":"https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-023-02121-7","source":{"id":"https://openalex.org/S107516304","display_name":"BMC Medical Informatics and Decision Making","issn_l":"1472-6947","issn":["1472-6947"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-023-02121-7","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061813240","display_name":"Donghyeong Seong","orcid":"https://orcid.org/0000-0002-8493-7321"},"institutions":[{"id":"https://openalex.org/I848706","display_name":"Sungkyunkwan University","ror":"https://ror.org/04q78tk20","country_code":"KR","type":"education","lineage":["https://openalex.org/I848706"]},{"id":"https://openalex.org/I2250650973","display_name":"Samsung (South Korea)","ror":"https://ror.org/04w3jy968","country_code":"KR","type":"company","lineage":["https://openalex.org/I2250650973"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Donghyeong Seong","raw_affiliation_strings":["Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, Republic of Korea","institution_ids":["https://openalex.org/I848706","https://openalex.org/I2250650973"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028632274","display_name":"Yoon Ho Choi","orcid":"https://orcid.org/0000-0001-6831-4450"},"institutions":[{"id":"https://openalex.org/I848706","display_name":"Sungkyunkwan University","ror":"https://ror.org/04q78tk20","country_code":"KR","type":"education","lineage":["https://openalex.org/I848706"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Yoon Ho Choi","raw_affiliation_strings":["Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea","institution_ids":["https://openalex.org/I848706"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009019474","display_name":"Soo-Yong Shin","orcid":"https://orcid.org/0000-0002-2410-6120"},"institutions":[{"id":"https://openalex.org/I848706","display_name":"Sungkyunkwan University","ror":"https://ror.org/04q78tk20","country_code":"KR","type":"education","lineage":["https://openalex.org/I848706"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Soo-Yong Shin","raw_affiliation_strings":["Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea","institution_ids":["https://openalex.org/I848706"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5030042887","display_name":"Byoung-Kee Yi","orcid":"https://orcid.org/0000-0002-7699-9629"},"institutions":[{"id":"https://openalex.org/I165507594","display_name":"Kangwon National University","ror":"https://ror.org/01mh5ph17","country_code":"KR","type":"education","lineage":["https://openalex.org/I165507594"]}],"countries":["KR"],"is_corresponding":true,"raw_author_name":"Byoung-Kee Yi","raw_affiliation_strings":["Department of Artificial Intelligence Convergence, Kangwon National University, 1 Kangwondaehak-Gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Department of Artificial Intelligence Convergence, Kangwon National University, 1 Kangwondaehak-Gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea","institution_ids":["https://openalex.org/I165507594"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5030042887"],"corresponding_institution_ids":["https://openalex.org/I165507594"],"apc_list":{"value":1570,"currency":"GBP","value_usd":1925,"provenance":"doaj"},"apc_paid":{"value":1570,"currency":"GBP","value_usd":1925,"provenance":"doaj"},"fwci":1.409,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":4,"citation_normalized_percentile":{"value":0.999976,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":91},"biblio":{"volume":"23","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10552","display_name":"Colorectal Cancer Screening and Detection","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9802,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/word-embedding","display_name":"Word embedding","score":0.6156989},{"id":"https://openalex.org/keywords/unstructured-data","display_name":"Unstructured data","score":0.5562642}],"concepts":[{"id":"https://openalex.org/C2778435480","wikidata":"https://www.wikidata.org/wiki/Q840387","display_name":"Colonoscopy","level":4,"score":0.79418445},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.71572834},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6975137},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6449465},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6191088},{"id":"https://openalex.org/C2777462759","wikidata":"https://www.wikidata.org/wiki/Q18395344","display_name":"Word embedding","level":3,"score":0.6156989},{"id":"https://openalex.org/C2781252014","wikidata":"https://www.wikidata.org/wiki/Q1141900","display_name":"Unstructured data","level":3,"score":0.5562642},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46695003},{"id":"https://openalex.org/C145642194","wikidata":"https://www.wikidata.org/wiki/Q870895","display_name":"Health informatics","level":3,"score":0.4382043},{"id":"https://openalex.org/C526805850","wikidata":"https://www.wikidata.org/wiki/Q188874","display_name":"Colorectal cancer","level":3,"score":0.42915273},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.38134038},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.33527434},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.32353413},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.3081386},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.19118533},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.18182623},{"id":"https://openalex.org/C138816342","wikidata":"https://www.wikidata.org/wiki/Q189603","display_name":"Public health","level":2,"score":0.09189576},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.090096205},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.08594817}],"mesh":[{"descriptor_ui":"D015179","descriptor_name":"Colorectal Neoplasms","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000077321","descriptor_name":"Deep Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D003113","descriptor_name":"Colonoscopy","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000073458","descriptor_name":"Data Warehousing","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D009323","descriptor_name":"Natural Language Processing","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s12911-023-02121-7","pdf_url":"https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-023-02121-7","source":{"id":"https://openalex.org/S107516304","display_name":"BMC Medical Informatics and Decision Making","issn_l":"1472-6947","issn":["1472-6947"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903463","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/36750932","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s12911-023-02121-7","pdf_url":"https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-023-02121-7","source":{"id":"https://openalex.org/S107516304","display_name":"BMC Medical Informatics and Decision Making","issn_l":"1472-6947","issn":["1472-6947"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.5,"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3"}],"grants":[{"funder":"https://openalex.org/F4320322034","funder_display_name":"Ministry of Health and Welfare","award_id":"HI19C1328"}],"datasets":[],"versions":[],"referenced_works_count":59,"referenced_works":["https://openalex.org/W1531333757","https://openalex.org/W1602694398","https://openalex.org/W1663984431","https://openalex.org/W1910522274","https://openalex.org/W1965555277","https://openalex.org/W1988995507","https://openalex.org/W2012465272","https://openalex.org/W2040298842","https://openalex.org/W2059922089","https://openalex.org/W2064675550","https://openalex.org/W2076073265","https://openalex.org/W2079735306","https://openalex.org/W2081926920","https://openalex.org/W2084127438","https://openalex.org/W2089290423","https://openalex.org/W2096252540","https://openalex.org/W2096797897","https://openalex.org/W2103545991","https://openalex.org/W2110485445","https://openalex.org/W2136242459","https://openalex.org/W2136552597","https://openalex.org/W2146089916","https://openalex.org/W2156235098","https://openalex.org/W2157331557","https://openalex.org/W2161351748","https://openalex.org/W2163738899","https://openalex.org/W2168041406","https://openalex.org/W2250539671","https://openalex.org/W2396881363","https://openalex.org/W2433575101","https://openalex.org/W2523886424","https://openalex.org/W2606769376","https://openalex.org/W2747326893","https://openalex.org/W2752413620","https://openalex.org/W2754868759","https://openalex.org/W2884001105","https://openalex.org/W2911489562","https://openalex.org/W2912908635","https://openalex.org/W2915128229","https://openalex.org/W2962739339","https://openalex.org/W2963716420","https://openalex.org/W2974308046","https://openalex.org/W2978560265","https://openalex.org/W2979356470","https://openalex.org/W2993873509","https://openalex.org/W2995349381","https://openalex.org/W3009963727","https://openalex.org/W3013605954","https://openalex.org/W3046262826","https://openalex.org/W3046375318","https://openalex.org/W3099905215","https://openalex.org/W3128646645","https://openalex.org/W3157876196","https://openalex.org/W4210264053","https://openalex.org/W4214578519","https://openalex.org/W4220913575","https://openalex.org/W4220919673","https://openalex.org/W4224307935","https://openalex.org/W4231576061"],"related_works":["https://openalex.org/W4390701126","https://openalex.org/W4318274204","https://openalex.org/W4286432911","https://openalex.org/W3211062742","https://openalex.org/W3028983594","https://openalex.org/W3016587774","https://openalex.org/W2999920852","https://openalex.org/W2381279477","https://openalex.org/W2363227174","https://openalex.org/W2073857279"],"abstract_inverted_index":{"Abstract":[0],"Background":[1],"Colorectal":[2],"cancer":[3,9,49],"is":[4],"a":[5],"leading":[6],"cause":[7],"of":[8,62,73,116],"deaths.":[10],"Several":[11],"screening":[12],"tests,":[13],"such":[14],"as":[15],"colonoscopy,":[16],"can":[17,41,252],"be":[18,42,253],"used":[19,43],"to":[20,78,89,102,144,176,234,255],"find":[21],"polyps":[22],"or":[23],"colorectal":[24,48],"cancer.":[25],"Colonoscopy":[26],"reports":[27,40,108],"are":[28,66],"often":[29],"written":[30],"in":[31,38,243],"unstructured":[32,63],"narrative":[33],"text.":[34],"The":[35,181,199,241],"information":[36,124,237],"embedded":[37],"the":[39,58,70,112,136,146,149,157,177,194],"for":[44,152,190,202,207,210,213,216,219,223],"various":[45,256],"purposes,":[46],"including":[47],"risk":[50],"prediction,":[51],"follow-up":[52],"recommendation,":[53],"and":[54,60,80,125,141,221],"quality":[55],"measurement.":[56],"However,":[57],"availability":[59],"accessibility":[61],"text":[64],"data":[65,114,173],"still":[67],"insufficient":[68],"despite":[69],"large":[71,171],"amounts":[72],"accumulated":[74],"data.":[75],"We":[76,134],"aimed":[77],"develop":[79],"apply":[81],"deep":[82,98,229],"learning-based":[83,99,230],"natural":[84],"language":[85],"processing":[86],"(NLP)":[87],"methods":[88],"detect":[90],"colonoscopic":[91,126,203],"information.":[92],"Methods":[93],"This":[94,226],"study":[95,227,245],"applied":[96,166,228,254],"several":[97],"NLP":[100,182,232],"models":[101,233],"colonoscopy":[103,107,153,239],"reports.":[104,240],"Approximately":[105],"280,668":[106],"were":[109,128],"extracted":[110],"from":[111,238],"clinical":[113,231],"warehouse":[115],"Samsung":[117],"Medical":[118],"Center.":[119],"For":[120],"5,000":[121],"reports,":[122,154],"procedural":[123],"findings":[127,204],"manually":[129],"annotated":[130],"with":[131,148,160,184,196],"17":[132],"labels.":[133],"compared":[135],"long":[137],"short-term":[138],"memory":[139],"(LSTM)":[140],"BioBERT":[142],"model":[143,183,195],"select":[145],"one":[147],"best":[150],"performance":[151],"which":[155],"was":[156],"bidirectional":[158],"LSTM":[159],"conditional":[161],"random":[162],"fields.":[163],"Then,":[164],"we":[165],"pre-trained":[167,185],"word":[168,186],"embedding":[169,187],"using":[170],"unlabeled":[172],"(280,668":[174],"reports)":[175],"selected":[178],"model.":[179],"Results":[180],"performed":[188],"better":[189],"most":[191],"labels":[192],"than":[193],"one-hot":[197],"encoding.":[198],"F1":[200],"scores":[201],"were:":[205],"0.9564":[206],"lesions,":[208],"0.9722":[209],"locations,":[211],"0.9809":[212],"shapes,":[214],"0.9720":[215],"colors,":[217],"0.9862":[218],"sizes,":[220],"0.9717":[222],"numbers.":[224],"Conclusions":[225],"extract":[235],"meaningful":[236],"method":[242],"this":[244],"achieved":[246],"promising":[247],"results":[248],"that":[249],"demonstrate":[250],"it":[251],"practical":[257],"purposes.":[258]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4319437616","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-09T13:46:55.677835","created_date":"2023-02-09"}